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ABSTRACT

This paper presents a formal model of linear array processors suitable for VLSI im-
plementation as well as graph representation of programs suitable for execution on such

'I a model. A distinction is made between correct mapping and correct execution of such
graphs on this model and the structure of correctly mappable graphs are examined. The
formalism developed is used to synthesiy, algorithms for this model.
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1. Introduction

In [4, 71 specialized array processors were proposed as a means of handling compute-bound problems in 3
cost-effective and efficient manner. These array processors generally consist of a regular array of simple,
identical processing elements which operate synchronously. A host computer drives the array as a
peripheral. The array can be of many forms, for instance a linear array, a rectangular mesh, a hexagonal
mesh. etc. Simplicity and regularity of these array processors render them suitable for VLSI

* implementation. High performance is achieved by extensive use of pipelining, and multiprocessing.

A variety of algorithms have been designed for such arrays [1, 2, 5, 101. An algorithm executing on such
arrays is comprised of several data streams. A data stream is unidirectional, that is, it does not change its
direction as it passes through processors in the array. Elements in distinct data streams move at different
velocities (processors / cycle) while all elements in a given data stream move at the same velocity. Every
processor in the array regularly receives data from each of the data streams, performs some short
computation, and pumps the data out. The array communicates with the host through certain
input/output ports designated as external input/output ports and elements in distinct data streams are
pumped in through distinct external input/output Ports. We will henceforth refer to such algorithms as
Marray aigoritlimse.

A few methodologies have been proposed for synthesizing array algorithms from program specifications
A- [3, 6, 12[. However in all these methodologies the synthesis problem was not studied in a formal

framework. In this paper we study the synthesis of array algorithms in a more rigorous framework using
a more intuitive representation of programs, namtely, data-flow descriptions of programs. In particuiar we
will be studying the synthesis of algorithms for a linear array. The array is comprised of identical
processors. that is, they all execute the same set of instructions in every instruction cycle, and they are all
simpeh that is, they do not have any addressable local memory and cannot perform branching. The linear
array is driven either by a single-phase or two-phase global clock [81. In a two-phase clocking scheme the
two phases are nonoverlapping and adjacent processors are activated by the opposite phases of the clock.
Two reasons motivate our study of such a model. Firstly, this model has been used for most of the
published array algorithms. Secondly, and more importantly, linear arrays require a fixed 1/0 bandwidth.
Hence they can be attached as a peripheral to the I/0 bus of any existing host without requiring any
change to the host's I/0 bandwidth.

We formalize this linear-array model and then define the program graphs that are appropriate for
execution on them. A program graph is a directed acyclic graph representing a computation. The edges
represent values and the nodes represent computation of a function whose arguments are the values
represented by the incoming edges. We distinguish between correct mapping and correct execution of
such program graphs on the linear array model. The structure of correctly mappable graphs are then
examined. We also briefly mention the importance of using some semantic knowledge (that is, some
property of the function represented by the nodes in the graph) to correctly execute the graph.

The remainder of this paper is organized as follows. In section 2 we formalize the linear array and
program graph models appropriate for execution on the linear array. We also provide precise definitions
for correct mapping and correct execution of program graphs on the linear array. In section 3 we examine
the structural properties of correctly mappable program graphs and support the formalisms by
synthesizing a few published and some novel linear-array algorithms.

Since the proofs of the theorems are quite lengthy, and since the reader need not understand it in order
to proceed, the details of the proofs are deferred to the Appendix. --

Jr7..



2. Computational Models

We begin with a formal definition of the linear array that captures the intuitive linear array model
described in the previous section.

2.1. Linear Array Model

A linear array is a 3-tuple Ar=<N,LAr, PAr> where:

1. N is a sequence of identical processors with indices ranging from I to [NJ.
2. LAr-{1, 12, .., 1kI is a set of labels.
3. Every processor in the array has k input ports and k output ports, with each input port and

output port assigned a unique label 1j from LAr. Each processor in N is connected to its
neighbors in the sequence through its I/O ports. In addition the first and last processors may
have input and output ports connected to the host environment.

4. The array is driven either by a single-phase or a two-phase global clock. A phase can be
viewed as the instruction cycle of a processor. In a single-phase clocking scheme all processors
are activated in every phase and every processor computes a k-ary function PAr' In a two-
phase clocking scheme adjacent processors are activated during opposite phases of the clock
and every processor computes PAr in the phase it is active.

The function V#Ar computed by a processor is a straight-line program. This restriction is imposed since
we have assumed that a processor does not have any branching ability. We will henceforth refer to a
processor in the array by its index in the sequence N. Let s be the index of a processor. Let

si,=<si2,si2,..,sik> denote the k-tuple input to processor s at time t where sJt is the value at the input
port labelled lj of processor s at time t. Let sot-<so ,sot,..,sok> denote the k-tuple output computed by
processor s at time t, that is, 'Ar(Si i:-=SOt.

For any label lj in L, let paj be the neighborhood relation imposed by label lj on processors in N. Let
<s,r> be any pair of processors in N.

Definition 2.1: We shall say that processor s is related to processor r by label tj denoted as s p r, iff
the output port labelled !j of s is connected to the input port labelled lj of r.

We will refer to a path of uniform labels through the array as a data stream. The linear array has the
following communication features.

1. A processor in the linear array can only communicate with up to two neighbors. All data
streams are unidirectional. Hence for any label lj in LAr, if ptj is not an empty relation, then a
neithborhood constant nat is associated with 1j such that the output port labelled lj of any
processor s is connected to the input port labelled lj of s+nlj where n1j is one of {1, -1, 0).

2. The elements in a data stream move at a constant velocity, and hence a non-zero positive
delay constant d1i is associated with every label Ij in LAr such that for any processor s, if sot is

the output computed by s at time t then soj appears at the input port labelled Ij of processor
s+nlj at t+dtj.

3. External communication takes place through certain designated input/output ports namely,

a. if pli is empty then the input port and output port labelled Uj of every processor
communicate with the host,

b. if nj==l then the input port labelled ij of processor I and the output port labelled ij of
processor .'\ communicate with the host.

c. if nj- then the input port labelled Ij of processor JN1 and the output port labelled tj of
processor I communicate with the host,

" d. if n1j-0 then a register in every processor serves as the input/output port labelled !j. No

"!
.,,4 '" ''' .:""",' "--.. . .. •". .',"."." .. " ' '," ' " " .,-,.. ,-, ''''' -',. . """"" .,, . . ,", -"- 7." " """
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input/output port labelled 1j communicates with the host. A value is preloaded into this
register before starting the computation and the result value (the preloaded value may
be updated as computation progresses) is retrieved from this register after the
computation terminates.

We will call the input/output ports that communicate with the host external input/output ports.

The delay dij can be implemented as a queue using a shift register of length dLJ-l if single-phase clocking
is used and of length (d j-1)/2 if two-phase clocking is used. At any time t, then, an activated processor s
in the array performs the following sequence of operations:

1. Compute where sit <si t , si, .. si k > and sot=<so', so t ... so k >.

2. For every label tj, dequeue the element at the head of the queue associated with Ij and place it
at the output port labelled Lj of s.

3. For every label 1j, place so at the tail of the queue.

Figure 2.1 illustrates a linear array with nlf=l, n 2 -- , al 3=0. The neighborhood relation p14 imposed
by label 14 is empty.

label I label #4I"t4 11I4 1 "414

1,1

2

Ot2 112

label C3 label t2

* Iflgure 2.1

Henceforth, "linear array (arrays)" used in the rest of this paper will refer to the model defined above.

2.2. Homogeneous Graphs

The linear array is comprised of identical processors all of which compute the same function (or
execute the same instruction ) in every cycle. All the processors in the array cooperate in executing a.
single program. As all the processors in the array are identical, the straight-line programs they execute
must also be identical. This motivates the following formalization of programs appropriate for execution
on linear arrays.

A homogeneous program graph G-<V,E,LG> is a labelled DAG where:

1. V=VGUSOGUIG, and Vr, 5 0
G and ST. are three disjoint sets of vertices with SO0 the set

of source vertices, SIG the set of sink vertices and VG the set of remaining vertices, which we

shall call computation vertices,
2. LG is a set of labels. Let JLG look, and
3. every vertex in VG has k incident edges and k outgoing edges, where each incident and

outgoing edge is assigned a unique label from LG.

Input edes and output edges in G are those edges that are directed out of and into source and sinkvertices respectively.

In any execution of G on a linear array, every computation vertex in G is a single instance of a function
evaluation that is performed in a cycle by a processor in the array. Hence the function represented by v-

then, must be a straight-line program and we can view the k incoming edges and the k outgoing edges of a
V
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vertex v as representing the k-tuple input value and k-tuple output value computed by the processor that
evaluates vx. A source vertex then, represents an input value and a sink vertex represents an output
value. As every computation vertex represents the same function, we refer to these program graphs as
Homogeneous Graphs.

Figure 2.2 illustrates a homogeneous graph. The solid and dashed horizontal edges are labelled 11 and 12
respectively. The vertical and oblique edges are labelled 13 and 14 respectively.

Figure 2.2

In Figure 2.2 and in all the other graphs illustrated in this paper we will be using "ol to represent
computation vertices and Ox" to denote source and sink vertices.

Although homogeneous graphs are a more limited class of program graphs than, for instance, general
dataflow graphs. it does allow the representation of quite a number of interesting programs which are
potentially suitable for execution on the linear array model. As we shall see, not even all homogeneous
graph programs can be executed on the simple computing engines we have defined.

Henceforth we will assume the following:

1. G is a homogeneous graph.
2. The label of a source (sink) vertex is the same as that of the input (output) edge directed out

of the source (directed into the sink) vertex.
3. Input (output) value will always refer to the value represented by a source (sink) vertex.

2.3. Mapoln% Homogeneous Graphs

We now give a precise formulation of correct mapping and correct execution of homogeneous graphs on
inear arrays. Intuitively, mapping of G onto a linear array Ar assigns each computation vertex of G to a
processor in Ar at a particular time step and also fixes the delay and neighborhood constant for every
label in LG. Assuming discrete time steps, let T={0,1,2,..) be the sequence of natural numbers
representing the progress of computation from its start at time 0.

Definition 2.2: A mapping of G onto a linear array Ar is a 4-tuple <PA,TA.NA,DA> where:

1. PA:VG->N and TA:VG->T are many-one functions mapping computation vertices onto
processors and time steps respectively.

2. Let 1+ be a set of positive non-zero integers. NA:LG->(1,-1,O} and DA:LG>I+ are many-
one functions assigning neighborhood constants and delays to labels respectively.

[Note: NA(lj)=nlj and DA(Ij)=djI

We next formalize a correct mapping.

Definition 2.3: A mapping is syntactically correct iff

1. VYjELAr and for any pair of computation vertices, v. and v., if there is an edge labelled !j
directed from vX to vy, then PA(Vy)=PA(v)+nj and TA(Vy)-TA(v.)+dt, and
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2. no two input/output values can appear simultaneously at the same input port of a processor.

Let i be the input value represented by the source vertex of a computation vertex, say, v ..Similarly, let
o be the output value represented by the sink vertex of another computation vertex, say, vy, Without loss
of generality, let the labels of the source and sink vertices be 1j. Now i is fed into the array and o is
retrieved from the array through the external input port and external output port respectively associated
with label (j. Let TA(v )=t and TA(Vy)=t 2.

Definition 2.4: Entry Time for i and Exit Time for o is the time at which i is fed into and o is
retrieved from the array respectively. Consumption Time of i and Production Time of o is t and t,+d1

respectively.

We are now in a position introduce the notion of correct execution of homogeneous graphs.

Definition 2.5: G is correctly executed on a linear array if the following two conditions hold:

1. the mapping is syntactically correct, and
2. for every input value its value at entry and consumption times must be the same and for

every output value its value at production and exit times must be the same.

Intuitively condition (2) means that we may be required to maintain a value input (outputted) to (by)
the array constant as it passes through some number of processors inorder that it arrive unchanged at a
processor (external output port) that will use it (from which it will be retrieved).

3. Syntactic Characterization

In this section we identify the structure of homogeneous graphs for which there exist syntactically
correct mappings. For notational simplicity we will be using the following conventions.

1. Computation vertices will sometimes be referred to simply as 'vertices'.
2. A pair of vertices will always refer to a distinct pair of computation vertices unless specified

otherwise.
3. A path will always refer to a undirected path between any pair of computation vertices. A

path will always comprise of a sequence of distinct vertices unless it is a cycle in which case
the first and last vertices are the same.

4. In any connected subgraph there exists a path between every pair of vertices in the subgraph
through edges in the subgraph.

5. A maximally connected subgraph (that is, if there exists a path between any pair of vertices
such that one of them is in the subgraph then the other must also be in the same subgraph)
will be referred to as a connected component.

6. A syntactically correct mapping will sometimes be referred to simply as 'correct mapping'.

We now identify the relevant structural elements of G.

Definition 3.1: For any label Ij in G, a major path labelled !j is a directed path from a source vertex

v. to a sink vertex v y such that the label of vx, vy and all the edges in the path is 1j.

The path label of a major path is the label of the edges in the path.

Definition 3.2: Two major paths are identical iff, ignoring the source and sink vertices in them, the

two directed paths are the same.

For any label Lj, let Eljf{major paths having the same path label 1j}. Not every Eli is relevant for a

syntactic characterization of homogeneous graphs. Consequently, we divide the labels of G into three
classes:

I. Ll{Lj I there exists a pair of computation vertices v, and vy and a directed edge
e=<vx,V > whose label is 1j. Besides for any 1i and lj in L1 there exists a major path in E

Y
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A that is not identical to any major path in Eli.} The major paths with these labels are relevant
for structural characterization of correctly mappable graphs.

2. Let L.={ lj I there exists a pair of computation vertices and a directed edge e=<vx, vY>
whose label is lj. Besides, if Lj is in L. then there exists an i in L, such that for every major

path in E there is an identical major path in E1i.} Given the major paths associated with the
labels in L, the major paths associated with those in this class are redundant for structural
characterization.

3. L3 -{lj I there exists no pair of computation vertices vx and vy such that there is a directed

edge e=<v ,,vy> whose label is Ij }.

Consider the graph in Figure 2.2 again. The solid and dashed horizontal edges are labelled 11 and 12

respectively. The vertical and oblique edges are labelled 13 and 14 respectively. L1=ll, 13), L2 -{12} and

L3 ={14).

Henceforth, throughout the rest of this paper, labels will be assumed to be in L, unless explicitly
mentioned otherwise.

Definition 3.3: A minimally labelled connected component SG of G is a 3-tuple <VSG, ESG, LSG>
where VsGV, EsGCE, LsGL , and VGCVSG (that is, all the computation vertices in G are contained

in VsG). Besides, for any IjELsG if all the edges labelled Lj in ESG are removed then SG is disconnected.

JNote: Unlike a minimally labelled connected component, a connected component need not include all
the computation vertices.

We will henceforth refer to LSG as the minimal label set of a graph G.

We have now developed the appropriate formal machinery to undertake a systematic analysis of the
structure of program graphs and we begin by examining gr:-phs that have exactly one label in their
minimal label set. In particular let LSG=(I-{}. This means that there exists a path between every pair of
computation vertices through edges labelled Lu. G is a homogeneous graph and hence there is only one
such pair of incident and outgoing edge labelled Is in any computation vertex. Consequently, there exists
only one major path labelled 1u in G and the path labels of all other major paths are either in L9 or in L.
Figure 3.1 illustrates such a graph.

Figure 3.1

In Figure 3.1 the solid and and dotted horizontal edges are labelled ll and 12 respectively. The vertical
edges are labelled 13. L1={1}, L-,={12} and L3 =(13}. Mapping such a graph is straightforward.

3.1. e Graphs

We next examine graphs which are comprised of two labels in their minimal label set. We denote
the class of such graphs as e graphs. e is a large class that includes homogeneous program graphs for
important computational problems like sorting, convolution, vector multiplication of band matricespattern matching, priority queue, linear recurrence, filtering, etc.

In particular, let Ls={=1A. IvI. GEe signifies that there is a path between any pair of computation
verties in G through edges that are labelled a or v. The structure imposed on SG by any correct
mapping is elegantly formalized below.

Definition 3.4: Let 11 and I. be two sequences of integers such that the sequences in 1, and I., range
from 0 to h1 and 0 to h, respectively and let Bgl X I. Then, SG is a Mesh Graph iff there exists a
one-one function F:VG->B such that the following property holds. Let F1 p and F11 be the projection

'-7



functions of F, that is, for any vX in VG , if F(vx)f<m,n> then Fl(v,-)=m and F,,( v,)=n. For any v,
and v. in V, there exists a directed path from vx to vy in a major path whose path label is Iai such that

Fiur 3.2 isean exmpeto a ecesh Gah hrein an tetclmjooah relbleth- distance from v to v in this directed path is d iff FI A(Vy)=Ft (vx)+d and Fl,(vy)=F,,(vx). A similar

condition holds for a major path whose path label is Lv.

Henceforth we will denote FL(Vx) and F1,(vx) as xi, and x1, respectively.

Figure 3.2 is an example of a Mesh Graph wherein the horizontal and vertical major paths are labelled

*p and 1v respectively.

F V Inure 3'2 )&m 03
, '€ei 41,1> <2,1>

v6

2>0,0

\We relate the structure of SG to the existence of a syntactically correct mapping in the following

Theorem.

Theorem 3.1: If there exists a syntactically correct mapping for G then SG must be a Mesh Graph.

Proof:See Appendix

When G is finally mapped onto a linear array the computation vertices in G may be partitioned into
sets that comprise vertices which are mapped onto the same physical processor. As we will see later on
this is useful in expressing the structure of correctly mappable graphs in a simple way. To formalize this
partitioning it is useful to define a Diagonalization of the Mesh Graph SG as follows.

Definition 3.5: Let wu.<w1 ,w 2>E{<l,I>, <1,-l>, <1,0>, <0,1>). A Diavonalization of SG is a

pair <D,w> with the following properties.

1. D={D1 ,D2 ..,Dk) is a family of ordered sets of computation vertices and DIUDzu ..UDk=VG.
2. For any D in D, if v, and v are in D then w X wxw

3. Let TD denote the indexing function associated with the ordered set D. For any pair of DP and

Dq in D, if v. and vy are in D and Dq respectively then TD(Dp) < TD(Dq) iff wtxt,+w 2 x,, <

Henceforth, we will refer to D as the set of Main Diagonals and to w as the Main Dia onalization
Factor. We will assume that the indices assigned to the diagonals in D range from I to 1DI and if D is a

diagonal in D then TD(Dp)=,,, that is, the index of D. in the ordering is p. We use the ordering o the

diagonals in D to define an adjacency relation imposed on them by labelled edges.

Definition 3.8: Let D and Dq be in D. Dp a1j Dq (read 'Dp is related by atj to Dq') iff there exists a

computation vertex v. in D and another computation vertex vy in Dq and a directed edge e=<YV.Vy>

whose label is lj.

Definition 3.7: aij is consistent with respect to YD iff 3 a constant mj such that VDpED and

q ED, if Dp afj Dq then TD(Dq)=TD(Dp)+mj.

We will call mij the consistency constant of aj. Let SD-={ajI IJELj and a,, is the adjacency relation on

D imposed by edges labelled ij }.

It is useful to define the se, Dc of Cot plementarv Diagonals that is obtained by diagonalizing SG by its
Complementary Diagonaliz ion Fat'- we where we=<O.1> when wE{<l,l>, <1,-1>, <,0>} and

wem<l,O> when w-<0,1.-.

... ,, z,*",.". ". .... .. _.,..,. -,,*._ ,.. ,p ,,.,S . + , , . , . ,,, . .. ,, ,,.. .... * .... '.. . .-.. .. .' .. ..
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Let TDC denote the indexing function associated with De and SD={bj j IiEL and b/j is the adjacency

relation on Dc imposed by edges labelled lj }. Herein also we will assume that the index of the
complementary diagonals in Dc ranges from I to IDcI and if Dc is a complementary diagonal in Dc then
its index is p. Consistency of bi with respect to TD, is defined similar to a,. Let c1 j denote the consistency
constant of bt1.

Consider Figure 3.2 again. Let w=<1,-1> and so w,=<O,1> Then the set of main digonals D={D,
D.,. D3 . D4 } is comprised of four diagonals where Dl={v8 ), D2 =-{v 3}, D3 ={v, v41 and D4 ={v2 , v.}.
The set of complementary diagonals Dc={Dcl, Dc2 , Dc3 } is comprised of three diagonals where Dc,={v,
v2 }, Dc.={v3 , v4 , vi} and Dc,=(v}.

Let v and v be two vertices in the main diagonals D and Dq respectively and complementary
diagonals Dc. and DCr respectively. Then we will denote the difference in indices of Dq and Dp which is q-p
as AD(VxvY). \Ve will also denote the difference in indices of Dcr and Dc which is r-s as IDC(vXVy).

We next define two classes of graphs ece and e 2 ce where:

611={GEe I SG is a Mesh Graph and the main diagonalization factor w of SG is one of (<1.-1>,
<0,1>, <1,0>)) and

e2={GEe ISG is a Mesh Graph and the main diagonalization factor w of SG is < 1,I>.

We provide a complete syntactic characterization of program graphs in O9 which have syntactically

correct mappings in the following Theorem. Before doing so we introduce the notion of transitive edges
which is needed in the proof sketch of the Theorem.

Definition 3.8: Let e=<vx,Vy> be a directed edge from vertex vx to vertex vy. Then e is a
transitive edge iff there exists a vertex v. and edges em=<Vx,Vz> and e,=<V,,VY>.

Theorem 3.2: Let GEe 1 . There exists a syntactically correct mapping for G if and only if there exists
a pair <D,Dc> such that each of the following conditions is satisfied:

1. Every relation ariES D must be consistent with respect to TD and its consistency constant m,, is
one of {1,-1,0).

2. Every relation b1jESDe must be consistent with respect to TD.
3. Let v. and vY be any two computation vertices. For any label 1j if

ctIAD(vx,vY)=miADc(VXVY) then there must be a major path labelled 1j passing through vx
and vy.

Intuitively, condition (1) ensures that a data stream is unidirectional and communication takes place
only between adjacent processors while condition (2) ensures that a data stream moves at constantvelocity and condition (3) ensures that no two values appear simultaneously at the input port of any
processor.

We sketch the construction used in the sufficiency proof as this construction is used to illustrate
synthesis of linear-array algorithms later on.

Proof: (Only If: See Appendix for details.

(If Part : Let D={D1 , D2, ... Da) be the set of main diagonals where i denotes the index of any DIED.
Construct a linear array LAr with I.\--n. Now construct a mapping through the following steps.

1. Choose two-phase clocking if there exists a transitive edge labelled 1j such that ml=) or else
choose a single-phase clocking scheme.

2. Let D1 be any diagonal in D and let v be any computation vertex in Dq. Then, let PAfv-)=q.
This assigns computation vertices to processors.

3. Next fix the neighborhood constant n,j and delay constant dj for every label !j in L1 . Let



n1j=mlj. Let d. and db be two constants which we will be using in the construction of the

delays for the labels in L1 . If the main diagonalization factor w is <1,-I> or there exists a
transitive edge labelled Ij such that mlj=O then let da= else let d1=1. Let cmin be the

minimum of all consistency constants among all the relations in S If C >0 then set db=l

else set db=l+lcminlda. Let dLJ--mljdb+cjd,.

4. Next construct the neighborhood and delay constant for the labels in L,. By definition of L,,

if there exists a label Ij in L2 then there must exist some label 1i in L1 such that for every

major path in E there is an identical major path in Eli. Hence let nlj-=n1 i and d j- --dl

5. For every lj in L3, let the neighborhood relation imposed by label Ij on processors in N be

empty and hence no processor's output port labelled tj is connected to the input port labelled

Ij of any processor.
6. Construct the function TA which assigns computation vertices to time steps. Let v, be the

computation vertex which is in DIED and Dc1 EDc. Let TA(v,)=t 0 . Let v. be any

computation vertex in D pED and Dc qEDc. Then, let TA(v,,)=-t0 iq-1)d +(p-1)d b.

Step 1 to step 6 described above completes the construction of a correct mapping. Refer Appendix to

verify that the mapping is correct.

0

The three conditions of Theorem 3.2 are necessary but not sufficient for the existence of syntactically
correct mappings for graphs in e,. However in the next corollary we show that in certain cases it is both

necessary and sufficient. Let GEW2 and let C={cj)-{cM, cl,}.

Corollary 3.1: Vc 1iEC, if ctj>O or VctjEC, if c j<0 then there exists a syntactically correct mapping

for G if and only if the three conditions in Theorem 3.2 are satisfied.

Proof: Similar to Theorem 3.2 except in the construction of the expressions for the delays. If c,,>0

then set d=2, db =1, dlJ-=I and d1v=3. If ctj<O then set d,=-2, db= 3 , d10=3 and dl,=1. In the

Appendix it is shown that this construction yields d1 >0.

0

The sufficiency proof of Theorem 3.2 provides a methodology to synthesize linear-array algorithms for
graphs in . The construction used in the Theorem maps a program graph correctly. However, very often,
to ensure its correct execution we need to use some property of the function represented by the

computation vertices in the graph. The structure of graphs that can be executed without using such
knowledge is characterized in [9.

We now apply the results described above to synthesize linear-array algorithms for computing the vector
multiplication of band matrices, sorting and convolution.

Example 3.1: Consider multiplication of a Band Matrix M by a Vector X as shown below.

*i11 '12

Y 2 all 22 022
"3 *3 132 033 a 3 4

Y4 -42 "43 "44 *43
Y3r" y0, 53 a5 4 *SS

1y, L £512

S%
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Figure 3.3 is a program graph representing this computation.

3434:34

In Figure 3.3 v.. denotes a coinm utation vertex. The horizontal, vertical and oblique edges are labelled 11,

12 and 13 respectively. Let *P denote the function represented by any computation vertex in the graph. 'k
is a 3-ary function such that for any a, b and c, 'P<a,,c>=<a+bc,b,c>. Let !P1 , P2, q'3 be the three
projections of '. that is, t<a,b,c>=a+bc, !' 2<ab,c>-b and %P3<a,b,c>=c. If a, b and c are the
input values represented by the horizontal, vertical and oblique input edges of viU then the output values

represented by the outgoing horozontal, vertical and oblique edges of v are !P,<a,b,c>, P.<a.b,c> and

P3<a,b,c> respectively. The input value represented by every horizontal source vertex is initialized to 0.
Let E1 1 {horizontal major paths), E12 ={vertical major paths) and E13 ={oblique major paths). It can be

seen that L1 ={11,12), L2={} and L3={13}.

Let SG be a connected component shown in Figure 3.4 that is obtained by removing all the edges
labelled 13 and source and sink vertices labelled 13.

% %

0.31 - 4 ---- "

2--

\ 2

Figure 34 PC6
03

04

For porposes of clarity SG has been drawn without the source and sink vertices. It can be easily verified
that the program graph in Figure 3.3 is in e as SG is a minimally labelled connected component
comprised of LSG{/1, 12}. Now diagonalize SG with w=<,-1> to form the set of main diagonals

D. It can be verified that D={D.D,D,D,4 } is comprised of four diagonals where D={vrV,v342 53 ,v6 4},

D2 = {V21, 3 2,V43.v 4 "Sv5), D3 (,{VI,v .,2 ,v33 ,v 44,v 5,) and D 4 {v,'12V 3 ,v3 4 ,v45 }.-

- . *J-*-**.* -
"- A.- ." : ; ' .. ' - -.-... ,----. ". -'-........ .4 .;.: :2 ..-/ y ... : ..; .2 ..... .i .i .... %? ....-



Next diagonalize SG with w,=<0,1> to form the set Dc of complementary diagonals. It can be
*-verified that Dc={Dc 1 .Dc,Dc 3.Dc 4'Dc,,Dc.) is comprised of six diagonals where D ''1)

* c=v)1 v 2 v 3 , Dc 3;r(V3 1,IV3 2,V33,v34 , DC4 =(V42 V4 3 v44,V45}, Dc5 ={v053 "v54, 3551 and
Dc;- (V 04 ' '; 5 .

In Figure 3.4 all the computation vertices belonging to the same diagonal in D lie oa the same dashed
line. Similarly all the computation vertices belonging to the same diagonal in Dc lie on one horizontal
major path.

Now SD ={ala!t1 SDc= bl,b 12 ) and ml 1=1, m,2=-1, c,,=O and C12 =1. It can be seen that this graph
satisfies Theorem 3.2.

Next, using the construction in Theorem 3.2 we synthesize the linear-array algorithm in [51. I1)t=4 and
hence the linear array has 4 processors indexed from I to 4. ml,3O and M12 #O and hence use single-phase
clocking. Each processor is comprised of 3 pairs of input/output ports labelled 11, 12 and 13 respectively.
The neighborhood relation P3is empty.

Let sil, si2 and si3 denote the inputs at the input ports labelled 11, 12 and 13 respectively of processor s at

time t and let sol, 502 and so 3 denote the outputs computed by s at time t. Then Sol-Sil+Si2Si3, So02si2

and so3=Si3.

The computation vertices in D1,D.,D3 and D 4 are mapped onto processors 1,2,3 and 4 respectively. From
the construction of Theorem 3.2, we obtain nh 1 1 n12 - l,d11 =1 and d12 =1. The resulting mapped graph
is shown in Figure 3.5.

De 4 W-.

-

_..X

CkPC1

.. . . . ** *~~ ~* ~-. .

I. , . .......t
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The time at which a computation vertex is mapped is indicated by the side of the vertex in Figure 3 5.
For instance, the computation vertex on D3 and Dc2 is mapped at time t+2. For correctness of execution
we must ensure the invariance of the two input values ih1 and ih2 at their consumption and entry times
and the invariance of the two output values oh5 and oh, at their exit and production times. The
consumption times for ih, and ih.. are t and t+1 respectively. Table 3.1 gives the times at which ih
appears at the input port labelled l of processors 1 and 2 and ib, appears at the input port labelled 11 of
processor 1.
; .! 2 3 4

i t -2 t-I

Table 3.1
ih] t

Any element pumped into [1or It2 travels at the rate of 1 processor/cycle as I/d 1/d12=l. Consider

some row of Table 3.1, say 2. The entry in column 1 indicates that ih. appears at the input port labelled
11 of processor I at time t. Now P, is such that for any b, P <a,b,0>=a+bOa and hence by pumping
0 into the input port labelled 13 of processor 1 at t invariance of ih2 at its entry and consumption time can
be maintained. Similarly by pumping 0 into the input ports labelled 13 of processor I at t-2 and processor
2 at t-1 invariance of ihi at its entry and consumption times can be maintained.

The production times for oh 5 and oh8 are t+9 and t+10 respectively. Table 3.2 gives the times at which
oh 5 appears at the input port labelled 11 of processor 4 and oh 4 appears at the input ports labelled 11 of
processors 3 and 4.

1 3 4

Table 3.2 °h 5  tt9

*oh 6  [ Ii Itli

The entries in Table 3.2 are interpreted in the same way as the entries in Table 3.1. From Table 3.2 it is
seen that by pumping 0 into the input port labelled 13 of processor 3 at t+10 and processor 4 at t+9 and
t+11 invariance of oh s and oh s at their production and exit times can be maintained.

Lastly, as Vk,<a,bc>=b for any a and any c, the input value iv1 and output value ov1 do not change
as they travel through processors in the array.

Example 3.2: We wish to sort the set of elements (2, 10, 5, 6}. A program graph that performs
sorting is shown in Figure 3.6 below.

ik1  ik, ik ik,
* 3

S.v,.v.oil
"1.! 12 13 14

k 0 ,oh,

23 24

3 v 3 3
3V3  3 4Fi gure 3.6 ok

31h'.. ..- ih, ..* - - o h,

V 4

.. k

*.a.. .. - . .
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In Figure 3.6 vii denotes a computation vertex. Each computation vertex represents the computation of

the minimum and maximum of the two input elements denoted by the incoming horizontal and vertical
edges. The outgoing horizontal and vertical edges denote the minimum and maximum respectively of the
two input elements computed by the computation vertex. The horizontal edges are labelled 11 and the
source and sink vertices connected to horizontal edges are all labelled 1. The vertical edges are labelled

12 and the source and sink vertices connected to vertical edges are all labelled 12. The set of horizontal
. source vertices is {ih1 , ihih 3, ih4 } and the set of horizontal sink vertices is {oh 1 , oh, o, oh 4 . Similarly

the set of vertical source vertices is {ik l , ik2 , ik3, ik4) and the set of vertical sink vertices is {ok 1 , ok,.

ok 3 , ok 4}. The initial values represented by the source vertices ik1 , ik., ik3 and ik4 are 2, 10, 6 and 5

respectively. The initial values represented by the source vertices ih1 , ih , ih3 and ih4 are all xo. It can be

verified that the final values represented by the sink vertices oh 1 , oh3, 0h1 and oh 4 are 2, 5, 6 and 10

respectively. We synthesize the algorithm known in literature as the 'rebound sorter' I1l.

Let E|-{horizontal paths) and E12={vertical paths). Hence L 1 ={11, 12), L,={0) and L3 ={,}. It

can be verified that this graph belongs to the class e as the minimally labelled connected component
comprised of the two labels from L1 is G itself.

Form the set of main diagonals D by choosing the diagonalization factor w to be <1,-i>. It can be
verified that D={ {v,v 22,.v 3,.v 44 , (v 1 2,v 23 v 34), {v 13 ,v24}, (v 14 }}.

Let D={DI,DI 3 1,D4 ) where D l{vll2,v $3,v3 3 v44), D2 ={v1 2,v 2 3 ,v 3 4 }, D3 ={v 13 ,v2 4} and D4--vI41.
It can be verified that the indices of D ,, D2, D3 and D4 are 1, 2, 3 and 4 respectively in the orderiing of

D.

D is obtained by diagonalizing with <1,-i> and hence form Dc by choosing its diagonalization factor

w. to be <0,1>. It can be verified that Dc={(vl,v 2,v1 3 ,v1 4}, {v. 2 ,v23 ,v0 4), {v3 3,v3 4}, {v44 }}. Let

Dc={Dc1 ,Dc2 ,Dc 3 .Dc4 where Dc 1---{v1 1 ,vj,v1 3 ,v 14)' Dc 2={v,,,v23 ,v, 4}, Dc=-{v,,v,.} and

Dc 4 ={v 44 ). It can be verified that the indices of Dc,, Dc,, DC3 and Dc 4 are 1, 2, 3 and 4 respectively in

the ordering of Dc.

DC1

£..-. D1 142D
3 0

DC2  2  V 3  V 4

Dc 3  V

Figure 3.7 N

Dc 
4

In Figure 3.7 above all the computation vertices belonging to a single diagonal in D lie on the same
dashed line. Similarly, all the computation vertices belonging to a single diagonal in Dc lie on one
horizontal major path.

Now. SD'-(agl,ac:} and Sc-(bf1 .b12}. a1 and a,, are consistent with respect to r. and b11 and b12 are

consistent with respect to TDC. Hence conditions 1 and 2 of Theorem 3.2 are satisfied. It can be seen that

." mt=l, m12 =-l, ci 1=0 and c,2=1. It can be also verified that condition 3 of Theorem 3.2 is satisfied by

the sorting graph.

Using the construction described in Theorem 3.2 we map the sorting graph. ID1-4 and hence the linear

4.-.
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array has 4 processors indexed from I to 4. mj 13O and m,2O and hence use single-phase clocking, Each
processor is comprised of 2 pairs of input/output ports labelled 11 and 12 respectively

Let sil and siz denote the inputs at the input ports labelled LI and 12 respectively of processor s at time t

and let sol and so2 denote the outputs computed by s at time t. Then, solfilin(sil, si2) and
t "t "tso =.Max(sQt , si ).

The computation vertices in D, D2 , D3 and D4 are mapped onto processors 1. 2, 3 and 4 respectively
Using the construction in Theorem 3.2 we obtain ni=1 , n12 -, d1 1 =2, dlb=l, dll= and di.=1-. The

resulting mapped graph is shown in Figure 3.8.
ik. ik. ik_ I&[

1 4 Figure 3.

I0I

Lastly, for any j, 3-ja4 we must ensure:

1. the invariance of input values, that is,

a. if PA~v~i)=-s and s>1 then the value represented by ihj must not change as it travels

from II to the input port labelled L1 of s,
b. it PA(v1j)=s and s<4 then the value represented by ik1 must not change as it travels

from 12 to the input port labelled 12 of s.

2. the invariance of output values, that is,

4-. a. it PA(vjj)=s and s>1 then we must ensure that the value represented by okj remains
* invariant as it travels from the output port labelled 12 of s to 02,

b. if PA(vj 4 )=s and s<4 then we must ensure that the value represented by ohj remains

-.-. invariant as it travels from the output port labelled 11 of s to 01.
'] ' We need to use some semantic information of the minimum (Nuin) and maximum (Mlax) functions

• " computed by a processor in the array in every cycle. We will use the property that Min(x,- c)----- and
.Maxx.€)---- in our synthesis.

In the mappingl we observe that for any j, I<j__4, PA(vi)-I and hence we need not consider {ia) and

(2a).

i 
.  

... ". - . .. . ...- -.- .. . - - ..... . . . - . --.. ... .- , . -. I, * . ,'.. ,' - . . ; .- •, . .

".- - '-" -"',---' "" ". : % " '. " ": ' "< ,;: -,2 4 0 1'" % "J : '" , i l ." -
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An element pumped into Lb travels at the rate of 1 proceesor / cycle (I / di.). Hence, if P.-tvl1 )=s

then we can compute the times at which the input value represented by ikj appears at the input ports
labelled 12 of processors 4.3,..,s-I. This is tabulated in Table 3.3. Similarly, if PA(vj 4 )=s then we can

compute the times at which the output value represented by oh. appears at the input ports labelled It of

processors s+1,s+2,..,4. This is tabulated in Table 3.4.

1 2 3 4 1 2 3 4

lkI  t- I t-2 t- 3 oh2  L +5

ik2  t t- i oh 3  t+6 t+7

ik3  t+I oh4  t+7 t+8 t+9

TABLE 3.3 TABLE 3.4

Consider some row, say row 2, in Table 3.3 and Table 3.4. The entries t,t-1 in columns 3 and 4 of Table
3.3 denote the times at which the iniput value represented by ik, appears at the input port labelled 12 of
processors 3 and 4 respectively. Similarly, the entries t+6 and t+7 in columns 3 and 4 of Table 3.4
denote the times at which the output value represented by oh3 appears at the input port labelled a1 of
processors 3 and 4 respectively.

Now consider row 2 of Table 3.3 and Table 3.4 again. If -cx appears at the input port labelled 11 of
processors 3 and 4 at times t and t-1 respectively then the input value represented by ik, is preserved.
Similarly, if oc appears at the input port labelled 1'2 of processors 3 and 4 at times t+6 and t+7
respectively then the output values represented by oh 3 is preserved.

For every entry in Table 3.3 we compute the times at which -cc must be pumped into 1, and this is
tabulated in Table 3.5. Similarly, for every entry in Table 3.4 we compute the times at which cc must be
pumped into L and this is tabulated in Table 3.6.

1 2 3 4 1 2 3 4

t-3 t-6 t+5 t+5

t-2 t-4 t; 6 t+5

TABLE 3.5 T - TABLE 3.6
t -1 t-2 t-4 t+7 t+5 t-+ 7

t t-2 t +8 t+-7

t" I t- 2 t + 9 f+'9

Consider some row, say row 2, in Table 3.5 and Table 3.6. The entry t-4 in column 3 of Table 3.5
indicates that for -=c to appear at the input port labelled 11 of processor 3 at time t-2. it must be pumped
into Il at time t-4. Similarly, the entry t+5 in column 3 of Table 4 indicates that for cc to appear at the

input port labelled 12 of processor 3 at time t+6, it must be pumped into L, at time t+5.

From Table ,3.5 we observe that it suffices to pump -co into I at times t-6, t-4 and t-2. Similarly. from
*Table 3.6 we observe that it suffices to pump oo into L, at times t+5, t+7 and t+9.

Example 3.3: Consider the convolution problem defined as follows.

Given the sequence of weights {w,, w2, .., wk} and the input sequence (xj, x2. . x} compute the

output sequence {Y y,, ... Ya~ 1 ~} defined by v. j' w+v1-
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We illustrate the convolution problem on n=5 and k=3. The computation of the convolution problem
for n=" and k=3 is represented by the program graph of Figure 3.9.

| vi v 2 I v 3

12 4

v31 v2 v33 j

;h3 Oh4 -ow *6%'- o63 °019IOA4 v2 0°3 Ov

Figure 3.9

In Figure 3.9, Vi and Vj II<i,j<_3, v U represents a computation vertex. The horizontal, vertical and
oblique edges are labelled 11, 12 and 13 respectively.

Let P denote the function represented by any computation vertex in Figure 3.9. , is a 3-ary function
such that for any a, b and c, !I<a,b,c>=<a+bc,b,c>. Let VP1, I2, IP3 be the three projections of P, that
is, P<a,b.c>=a+bc, *P2<a,b,c>=b and *!'3<a,b,c>=c. If a, b and c are the input values represented
by the horizontal, vertical and oblique input edges of vij then the output values represented by the
outgoing horozontal, vertical and oblique edges of vij are Vf'<a,b,c>, !P<a,b,c> and P3 <a.b,c>
respectively. Vp I 1<p_<5, Vq I l<q<3 and Yr I 1:r<3, let the input values represented by isp, ivq and

ihr be xP, Wq and 0 respectively. It can then be verified that the output values represented by ohr is

-' WqXr+q.l*
q=1
Let En1 {horizontal major paths), E12=(vertical major paths} and E13={oblique major paths). It can

be seen that L={l11,12,13}, L{-( ) and L3 ={.

Let SG be the connected component shown in Figure 3.10 that is obtained by removing all the edges
labelled 13 and source and sink vertices labelled 13.

vilI V12 VI3

04-2...
' 21 v2 2 '2

1,e3 "v3t tv32 IV33

Figure 3-10
For purposes of clarity again SG has been drawn without the source and sink vertices. It can be 5een that
the program graph in Figure 3.9 is in e as SG is a minimally labelled connected component comprised of
two labels 11 and 12.

Now diagonalize SG with w=<l,0> to form the set D of main diagonals. It can be verified that
D={D.D 2.D3 )} is comprised of three diagonals where Dl=(v1 1 ,v-1 ,v31 }, D2-- v12 ,v-2 ,v,2 } and

,3={v. 3,v- 31v33).
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Next diagonalize SG with w =<O,I> to form the set Dc of complementary diagonals. It can be verified
-. that Dc={Dc1,Dc2,Dc 3 } is also comprised of three diagonals where Dc,=,{v,,.v 2,v, 3 }.

Dc. { . 2.), Dc3 {v_3 1,v32.v33}.

In Figure 3.10 all the computation vertices belonging to a single diagonal in D lie on the same vertical
major path. Similarly, all the vertices belonging to a single diagonal in Dc lie on the same horizontal
major path.

Now SDm{al,aL,a($}, SD-={btl,b12,b13} and m11=1, m[2==O, m13=-l, c11=0, C12 =1 and c13=1. It can
be verified that Theorem 3.2 is satisfied.

We next synthesize the linear-array algorithm in 17]. [D=3 and hence the linear array has 3 processors
indexed from 1 to 3. m12 =0 and there exist transitive edges labelled 12. Hence use two-phase clocking.
Each processor is comprised of 3 pairs of input/output ports labelled 11,12 and 13 respectively.

Let sit, si2 and si3 denote the inputs at the input ports labelled 11, 12 and 13 respectively of processor s at
time t and let sot, so and so3 denote the outputs computed by s at time t. Then, so-si l +si 2Xsil,

so =si2 and sof=si.

Using the construction in Theorem 3.2, we obtain nll--I1, n12 =0 and n13-1. We also obtain d11=1,
d12 =2 and d(3=1. The computation vertices in DI, D2 and D3 are mapped onto processors 1,2 and 3
respectively. The resulting mapped graph is shown in Figure 3.11.

'p D 2 : 02!

Do 1 - 0€ ~ tq,2

D. 2 -___A. t+2 t3 . t14

Pt " t tt6

c,!2  113
lab I t2 label13

Figure 3.11

Lastly, we must some semantic properties of * for correctness of execution. *,2 and ;P3 are such that for
any ab and c, ,<a,b,c>=b and * <a,b,c>=-c. Hence, the input/output value represented by the
source/sink vertices of any vertical or oblique major paths does not change as it travels through
processors in the linear array. In Figure 3.11 it is seen that the entry and consumption (production and
exit) times for every input (output) value represented by every horizontal source (sink) vertex are the
same.

Let t. be the time when the computation begins. Clearly t<:5t. Since nt2=0 a register in each processor
serves as the input/output port labelled 12. Let r,, r, and r3 denote such a register in processors 1.2 and 3
respectively. Then the input values of iv,, iv., and iv3 which are w, w,. and w3 respectively are preloaded
into r, r,_ and r3 respectively before t3.

3.2. Cube Graphs

A natural generalization of the program graphs in e are graphs whose minimal label set is

AV

%

,~~~~~~~~~~~~~~~~~~~~......... . ..... ........ ' .......- ;........... ....... ..... ... ... . .-.. . -.. , , .. ,, *, -. ', , ,, ,,
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comprised of more than two labels. Program graphs for important problems like matrix multiplication
hI-decomposition of matrices, operations on relations in relational databases are examples of such graphs
A complete characterization of such graphs seems difficult and in this section we examine an important
subset of such program graphs and provide a technique for correctly mapping such graphs.

Let G=<VE.LG> be a program graph with its label set LG={1l, 12.13'. Let 1=1111, 1.) be a family .

of sets of sequences of integers ranging from 0 to h1 , 0 to h., and 0 to h3 respectively. Let B CI t X12 X 13

Definition 3.9: G is a Cube Graph iff there exists a one-one function F:VG -> B where:

1. VG is the set of computation vertices in G.

2. Let F11, F12 and F13 be three projection functions of F, that is, if F(VY)=<c 1 ,c.,c 3 > then
Fll(vxffc l , Fi2(vx)=c2 and F13(vx)--C 3 . Let v, and vy be any two computation vertices in VG'

Then, for any label 1ELG, there exists a major path labelled I passing through vX and v such
that the distance from vX to vy is d iff F(vy)-F(v.)+d and VtELG-{L}, Ft(vy)=Ft(v,).

A Cube Graph is an object in Euclidean 3-Space and we will refer to the 3 axes as 11
th , 

128d and 13 rd

axes. h, h2 and h3 are the maximum dimensions along 11
th , 

12
a d and 13 rd axes respectively and h li

h2 > and h3 l. If v1 is a computation vertex in a Cube Graph then we will refer to F11(vx), F12 (v.) and

Ft3(vx) as 11h, 12 1d and 13 rd coordinate respectively and denote them by x11, x12, and x13 respectively.

Let H=({1} x {1,-1} x {1,-1} be the cartesian product of the set {1,-). Let w=<w,, w2, w3 >EH.

Definition 3.10: A Diaonalization of a Cube Graph is a pair <D,w> with the following properties.

1. D={D1  D, .., Dk} is a family of ordered sets of computation vertices and
DlUD.U..UDk=VG.

2. For any D in D, if vX and vy are in D. then wlx11+w2x1 2 +waxI 3 = wtyt-+w2y12 +w3 y3 .

3. Let rD denote the indexing function associated with the ordered set D. For any pair of D and

Dq in D, if v. and vy are in Dp and Dq respectively then TD(Dp)<TD(Dq) iff
wlx l +w 2X12 +w 3xi2< lwyl 1+w 2y(2+w 3y 3.

We will refer to w as the Diagonalization Factor of the Cube Graph. Let wp denote the weight of the

diagonal Dp in D, that is, if v. is a vertex in D then wixll+W.X[2-+w 3 xl3- w.

Consecutive indices are assigned to the diagonals in D with the diagonal having the least weight assigned
index 1.

4

Throughout the rest of this section G will refer to a Cube Graph. 11, 12 and 13 will refer to the three
labels in its label set LG and the subscript of a diagonal will refer to its index, that is, if D is a diagonal

in D then its index is p.

[Remark 1: A Mesh Graph is a Cube Graph with ILGI==2, that is, cardinality of the label set is 2 and

Diagonalization of a Cube Graph is a generalization of Diagonalization of a Mesh Graph.

Remark 2: A minimally labelled connected component SG of a Cube Graph with LSG={Il. 12, 13} is G

itself.]

Let IELG. Let MG--{MG. MG2, .., MGh) be the set of connected components formed by removing all

the edges labelled I and source and sink vertices labelled I from G. The label set for any .MGi in MG is

Lemma 3.1: MGi is a Mesh Graph.

Proof: Follows immediately from definitions of Mesh and Cube Graphs.

0
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We next combine the Mesh Graphs in MG into classes as follows.

Let CG={CG1 , CG 2 . ... CGj be a family of sets of Mesh Graphs such that CGi--{MGqEMG if v is

a computation vertex in MGq then Ftv.()=il (that is, Mesh Graphs in CG i have the property that the pt h

coordinate of their computation vertices is i).

Note: F is F11 if 1=11 or F12 if 1=12 or F13 if 1=13. Aslo the jth coordinate is 11t coordinate if 1=11 or

12 nd coordinate if 1-12 or 13 rd coordinate if 1=13 .

We next describe the algorithm to map a Cube Graph onto a linear array . Let Ar=<N'LArlor>

denote the linear array onto which G is mapped. Without loss of generality, let 1=13. So the label set of
any Mesh Graph within any set in CG is (11, 12}. Let *I denote the function represented by a
computation vertex in G.

Choose some Diagonalization Factor w=<w, w', w3> from H. Let D be the set of diagonals obtained
for this w. Let IDI=m. Choose the number of processors in N to be m, that is, let [NI=IDI=m. Let
*'Ar=P= and LAr=LG* Let D={D1 , D2.. .. Dm} denote the ordered set of diagonals in D and let {1,2,..,m}
denote the sequence of processor numbers in N.

The algorithm that maps G onto Ar is explained in three phases. In the first phase we show how to
choose the neighborhood constants n,, n12 and n13 for the labels 11, 12 and 13. We also show how to
construct the function PA that maps computation vertices of G onto processors in Ar. In the second phase
we show how to choose the delays dt and dt. for the labels 11 and 12. We also show how to map .\lesh
Graphs in CG in this phase. In the third phase we show how to determine the delay d(3 for label 13. We
also show how to construct the function TA that maps computation vertices onto time steps by
composing the mappings of the Mesh Graphs constructed in phase two.

Phase One

Let n1 1=w1 , n1 2 =w 2 and n13 =w 3. For every computation vertex vx in diagonal Di, let PA(v)=i. that

is, map the computation vertices in the ith diagonal onto processor i.

Phase Two

1. set d1 f=l. I n 2 =1 then set d- 2 =2 else set d 2 =1.
2. For every CG. do the following:

a. let vi denote the computation vertex whose coordinates are <0,0,i>. Let TA(vi)-t (we
will show in phase three how to determine ti),

b. if vx is a computation vertex in any Mesh Graph in CG i, let TA(v.)- t1+xd 1 +x2 d2 .

Phase Three

We first show how to determine d13.

1. if n1t=nt2 then

a. if h1 -h2+n%: O then choose d 3 =ht+1+2nt3,
b. if h -h2+n13 <0 then choose d 3,=h 2 +1+n 1 3,

2. if n,1 yin1 2 then

a. if h.,-h 1+n 1 3 _0 then choose d1 3 =2h2 +1+nl,
b. if h2-h-+n 3 <0 then choose dt 3 =2h 1 +1-nt 3.

Once d13 is determined, we compose the mapping of the Mesh Graphs in CG by letting t=tt+id3 .

We show that this mapping is syntactically correct in the Appendix.
-'-
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Phases one. two and three performs a syntactically correct mapping of a Cube Graph onto a linear
array However to demonstrate a correct execution of the program represented by the Cube Graph some
semantic information about the function represented by the computation vertex in the Cube Graph needs
to be used as we show in the following examples wherein we use the mapping algorithm described above to P
synthesize novel linear array algorithms for multiplying matrices that we reported in 1101 These

" algorithms multiply two nXn matrices using O(n) processors in O(n 2 ) time steps. The processors used
require no control, no addressable memory and the array requires no loading and unloading circuitry

" Example 3.3: Consider multiplication of two matrices A and B as shown below.

ra1 a 1  1i b12 bl 11 12 C c1j

[ a2 j 22 21 b22 b23J L21 C2C3
A program for computing this multiplication is given by the following recurrence.

=0

The program graph in Figure 3.12 is a representation of this program. In Figure 3.12. pij and qij denote

computation vertices. The horizontal, vertical and oblique incident edges of Pij are labelled 11, 12 and 13

respectively. Similarly the horizontal, vertical and oblique outgoing edges of qij are labelled il, 12 and 13 p
respectively. If the horizontal, vertical and oblique incident edges of pU or qii represent the values a, b and

c respectively then the horizontal, vertical and oblique outgoing edges of piU or qij represent the values a, b

" and c+ab respectively. In Figure 3.12, the oblique input edge incident on pil represents the value c(P

which is 0. The oblique outgoing edge from qi reresents the final (output) value cOs) of cij, that is.
aiiblj+ai2 b2 j.

The program graph in Figure 3.12 is a Cube Graph as illustrated in Figure 3.13. The Cube Graph is
shown without the source and sink vertices for purposes of clarity. The maximun dimensions of i1t l, 12-d

. and 13 rd axes is 2. 1 and 1 respectively, that is, h =2, b --=1 and h3 =1. We next map this graph onto a

linear array using the mapping algorithm described earlier.
Let w=<wj, W', w3>=<1, 1, 1>. It can be verified that for this choice of w, the set D of diagonals is

comprised of {D ,, D. D3 , D D3 } where D=(p}, D-(p _,, P21' qj1 }, D3 ,{p 1 3 , P- , q12, q 1 },
D4 - {p.3 , q13 , q-2 } and D-=(q }. Since IDI=5, the linear array has ,5 processors indexed from 1 to .5.

Each processor is comprised of 3 pairs of input/output ports labelled 11, 12 and 13 respectively.

Let sit, si2 and si3 denote the inputs at the input ports labelled 11, 12 and 13 respectively of processor

indexed s at time t and let sol, so and so3 denote the outputs computed by s at t. Then, so-si.

so=si" and so3=si3ssilsi*.t t t  S t "+St V1

- From phase one. we obtain n1 1=1, n12 =l and n13-l. Also all the computation vertices in Di are mapped

,. onto processor i.

41 nt2==l and so from phase two, we obtain d 1 1 1 and d1 =2 as the delays for 11 and 12. Now n,--n 12

and h-h-+n3 >O and so from phase three, we obtain d-3 =h 1+ 2n,=2+1+2=5 and hence t=t

The composed mapping for the entire graph is shown in Figure 3.15.

• •. .. • . *• * ° , *** % - . . . . .. ° .. *. °* . . ' . .. .• . . .•
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''-" ~ ~ineargurray4 I , 1 nd1 r thruhwih extra con ctont ae l ace1,. The e eets of thp rices A., Oan

% I.

InFigthe input vau 1, and c s av f the input ports labelled 13 respectieevy of processor 1. s 0s

linear array through which external communication takes place. The elements elf the matrices A, B and

2. or ny an jif A(%=s nd < heatheoupt alue I oes t changTe asmpite traeso

!! :i and C are pumped into the array through the ports It, 12 3 rsetvl.Tecmue auso

matrix C emerge out of the port 0 3
-':'-'.Lastly, we must show that:

1. for ayi and j, if P pU=s(i.e., if s is the processor onto which p is mapped) and s>1 then

thanpu vau PAPoe)s o hnea ttaesfo oteiputpr lble 1 fs

"2. for any i and j, if PA(q%)fs and s<5 then the ouput value c(P). does not change as it travels

. .- from the output port labelled 13 of s to 03.

An element pumped into 13 travels at a velocity of 0.2 processors/cycle (1/d 3 ). Hence if PA(p,,)=s then

we can compute the times at which the input value cW) appears at the input ports labelled 13 of processors

indexed 1,2...,s-1. Similarly if PA(qij)=s then we can compute the times at which the output value c( 1

appears at the input ports labelled 13 of ss..5.This is shown in Table 3.7. Consider 5ome row - say
row 5 in Table 3.7. The entries t1 -li, t1-6 and tl-1 in columns 1, 2 and 3 denote the times at which the

@1 input value c{ ) appears at the input port labelled 13 of processors indexed 1, 2 and 3 respectively.

Consider row 5 again. If the value 0 appears on any of the other two input ports of processors 1. 2 and 3
at times t -1l, t1 -6 and t -I then the value represented by c is preserved. An element pumped into I
travels at the rate of I processor/cycle (1/dtj). It can be verified that if 0 is pumped into 11 at times

d e-a . . . . -S*". . . * .. . *
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t1 -i1, t1-7 and t 3 then 0 will appear at the input ports labelled 11 or processors 1, 2 and 3 at times t-I .
t-6 and t I respectively.

For every entry in Table 3.7, we compute the times at which 0 must be pumped into 11 and this is

tabulated in Table 3.8. Consider some row in Table 3.8, say row 6 The entries t1-3 and t -4 in columns I

and 2 indicate that for 0 to appear at the input port labelled 11 of processors I and 2 at time t -3, 0 must

be pumped into 1 at times tY3 and t1 -4.

- From Table 3.8 we observe that it suffices to pump 0 into II between t11 and t -3 and also between

t1+8 and t1 +16.

c() t1-4

13 -8

t -3 ____

Lc , t -7 tl-2

c(I3)  t-ll1 tf tl-

Table 3.7 _11 t 1+10 t 1+15 t,+20
_(___ t +11 t +16

,(3)"13 _.It1+12

4 1) t1+17
(3)

ti-li ti-ll _______

t1 -8 t1-8

tz-7 t1 -7-4-

t 1 -67
t'6 t-7
ty-4 t1-4

t-3 t1 -3 t1 -4

- t1-3
ttIl t-3

Table 3.8 t t+8

t-1 " t1+8
t11 t1 +8 1 +

it +1 +
It1 I t1+7 t1+8

t1+13 t+

t't+15 tt'+ 2

t +16
I t1+12

11+. 0  t1 +13
%I ________+______X_
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D={q 1 }D 2 {p 1 q1 ,q 1 }D={Po 1'qq,},D=pp 2 ,q 3 }D={p.Example 3.4: Consider again, multiplication of matrices A and B of example 1 for a different choice

of w. Let w=<w1 , W.,, W >=<1,l,-1>. For this choice of w, the set D of diagonals is comprised of

WVe use jDJ=5 processors indexed from 1 to 5. The neighborhood constants for labels 11, 12 and 13 are

n=.n,.),=l and n,3=-'. The vertices in Diare mapped onto processor indexed i. The delays for the
labes 1, 1 an 13are 1 1 =, d 4 =2andd 1 3 1. The resulting mapping of the entire Cube Graph is

* shown in Figure 3-15. In Figure 3.15, 11 and L~are the input ports labelled 11 and 12 respectively of

processor 1 and 03 is the output port labelled 13 of processor 1. Similarly 01 and 0, are the output ports

labelled 11 and 12 respectively of processor 5 and 13 is the input port labelled 13 of processor .5. These are

the ports of external communication.

*Constructions similar to those used for Table 3.7 and Table 3.8 are used to construct Table 3.9 and
Table 3.10 respectively. From Table 3.10 we observe that it suffices to pump 0 into 1, between tY~7 and

Y1 2 and also between t,+3 and t,+8.

1*12

Ak p

Figur2 33i

+3 11+4 I +

.. 3. . . . 0 1 N...? J.

03*** . *'-0. . .'- 4 02

Fiur 3..'N15-
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t - -2t -

t~+

______ t 1 +3__ _ _ _ _ _ _ _

13) t +5 t +4 _____

C.0__ t1 +4 _____

CL)t1+6 t, +5 _ _ _ _ _ _ _ _ _ _

.3t 8 t +7 t +6

Table 3-10

*t~ .-3 ______ ____( 
t1 -7

t1 -2 _______ti-S

tt 1 -3 t1 -4

t 1 +I ____ ti-2 ti-3

.ti+

1  tI'

t1 +3 t1 +3 _____ ____ __ _ _ ____

t1 +4 t 1 +4 t1+3 ____ _____ _ _

t 1+5 t1+5 t+

ti+6 tt+6 t1 +4 ____

71+7t 1 +6

t 8t +8 -

Table 3.11

do
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4. Conclusions

We presented a formal model of linear arrays suitable for VLSI, and introduced homogeneous graphs
which are a natural representation of programs potentially executable on such arrays. We then introduced
1 graphs which are subsets of homogeneous graphs and provided a set o necessary and sufficient
conditions on the structure of graphs in 9 for the existence of a syntactically correct mapping. As a
practical consequence we developed a technique to synthesize linear-array algorithms for programs in 9
and synthesized a few published algorithms.

Subsequently, we examined Cube Graphs which are more general than graphs in e and showed a
technique to map such graphs correctly onto linear arrays. As a consequence we synthesized some novel
linear-array matrix multiplication algorithms.

The technique to correctly map a Cube Graph can be generalized to correctly map Hypercube Graphs
(that is, Cube Graphs in Euclidean K-space where K>3) onto linear arrays. The details appear in IP1.
However, Hypercube Graphs are only proper subsets of graphs that are not in 9. The structure of any
correctly mappable graph that is not in e is an open question.
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Appendlx

Theorem 3.1 and Theorem 3.2 characterize the structure of graphs in e. We now develop the proofs for

these two theorems. la addition we will also show that the algorithm to map a Cube Graph on a linear
array is syntactically correct.

We first establish certain fundamental results on major paths and Mesh Graphs which we will use later
on in the proofs of the two theorems.

We will continue to follow the notational conventions adopted in the beginning of section 3.
Additionally, for any two computational vertices v. and vy, we will be using Ap(v x, vy) and A.r(v x, vy) to

denote PA(vy)-PA(vj) and TA(vyJ-TA(vj) respectively. Also all the labels in G will be assumed to be in

L unless mentioned otherwise and SG will denote a minimally labelled connected component of G.

A.1 Properties of Major Paths

A major path specifies some transformation that a data item undergoes and a correct mapping of a
program graph preserves the transformations of all the major paths in the graph. The value represented
by a major path will be either the input value represented by the source vertex or the output value
represented by the sink vertex or an intermediate value represented by an edge between two pairs of
computation vertices in the major path. All major paths in a program graph are unique as we have not
assumed any properties of the function represented by the computation vertices in the graph. So a value
represented by a major path is also unique. We use uniqueness to mean that the value represented by a
major path is distiguishable from the value represented by any other major path.

The processor model that we have used in the linear array does not have any branching ability. This
imposes certain restrictions on major paths labelled Lj in mappings where the neighborhood constant n1j is

0. These restrictions are captured in the following lemma.

Lemma A.I: Let jEL1 and vx and v Y be any two computation vertices. In any mapping, if nij=0
and PA(vy)=PA(vx ) (i.e., the neighborhood constant of label lj is 0 and v. and vy are mapped on the

same processor) then vx and v Y must be in the same major path labelled Lj.

Proof: If nis0 then in every processor a register serves as the processor's I/O port labelled lj and a
value is preloaded into this register, and so if vX and vy are in different major paths labelled lj then two

registers would be needed - one to hold the value of the first major path and the second to hold the value
of the second major path. The processor would then require branching to choose one of the two registers
whenever it is in active phase.

In the following lemma we relate the vertices and edges in a path to the processors and time steps at

which they are mapped.

Lemma A.2: Let vx and vy be any pair of vertices in G. Consider any path p from vX to vy. For

any label Ij let V and k2 denote the number of edges labelled lj in p whose directions are consistent and
not consistent respectively with the directed path from v. to vy through the same sequence of vertices as

in p. Then in any correct mapping of G, E (k - k2)n - &p(vV) and (0 - k)d 1 = T(vvy)

Proof: Let E (k1 + k -) n. So a is the path length. The lemma is easily established by induction on

n.

From the above lemma the following result on major paths is immediate.

Lemma A.3: Consider any major path labelled Ij and let v. and vy be any two vertices in this

major path. Then in any correct mapping of G, p,(vX,vY)dtjfT(vx,vy)nJ.

Id.



-z,. 77 7.-7-7 -7

ri28

Proof: Immediate from Lemma A.2.

We next show that it two major paths have the same set of computation vertices then they must be
identical.

Lemma A.4: Let q, and q. be two major paths. Let V, and V2 be the sets of computation vertices
in q, and q2 respectively. If VI=V2 and there exists a correct mapping for G then q, and q2 must be
identical.

Proof: Suppose q, and q. are not identical. Then there must exist two computation vertices vx and
Sy in q, and q2 such that vx precedes vy in q, and vy precedes v. in q2. Now consider any correct mapping

of G. v. precedes v y in q, and so AT(Vx,Vy)>O. Likewise vy precedes Y. in q2 and so T(vxVy)<O - a
contradiction.

0

We are now in a position to show that there can be at most one label in Li whose neighborhood

constant can be 0.

Lemma A.5: Let Li and lj be any two labels. Then in any correct mapping of G, if n,1 -n1 j then
n..E 1.-).

Proof: Li and Lj are in L, so there exists a major path q labelled Li that is not identical to any of the
major paths labelled lj. This implies that there exists a major path q. labelled Ij and,

1. either the computation vertices in qq and qr are the same,
2. or the computation vertices in q. are a subset of the computation vertices in qr,
3. or the computation vertices in qr are a subset of the computation vertices in qs.

Consider the first case. By Lemma A.4, qr and q. must be identical.

Next consider the second case. q. passes through a subset of the vertices in qr. Let v1 and v y be two
vertices in qr such that v, is in this subset and vy is not. Clearly then, there is a major path qt labelled Lj
distinct from q, that passes through vy as illustrated in Figure A.1.

V +

Lemma A.. So n,=n1j0.

We can similarly show that n1 =nj3A in the third case also.

A correct mapping must ensure that no two values appear simultaneously at the input port of any
~1uI processor. As we see in the next lemma this forces some constraint on the structure of major paths.

. .. % *
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Lemma A.8: For any label Lj and for any pair of vertices vx and vy if Ap(VxVy)dlj=AT(VxVy)flj
in any correct mapping of G then there must be a major path labelled Lj passing through v and vy.

Proof: Assume that in a correct mapping there exists a pair of vertices vx and v y and a label Lj such
that APvx,iv Y.)dI -=-T(vx,vY)ntj and vx and vy are in different major paths labelled Ij. Let q, and q2 be
the two major paths such that v. is in q, and vy in q2" Using Lemma A.3 it can be easily shown that that
for any pair of vertices vu  in q, and vw  in q_, if &p(v.,vy)d -=AT(v,v,)nj then
Ap(vu,vw)d jATVuVw)nUJ. So assume without loss of generality that vx and v are the first(a)
computation vertices in q, and q2 respectively. Now n1jE{1,-1,0}. We will arrive at a contradiction for
each of the three values that nij assumes.

Case 1: n-=O. So A&pvx,vy)=0 as dtj>O. Hence by lemma A.1 there must be a major path labelled lj
passing through vx and v y - a contradiction.

Case2: n=l-. Now Ap(vx,vy) must be either 0, positive or negative. Let PA(vx)=s and PA(vy)=S,.
Let TAv,)-t and TA(vy)=t 2 .

(A): Ap(V.,v)=0. So sl=s2. Now nil-70 and so AT(vx,vy)=O. Hence the input value represented
by source of q, and the input value represented by source of q, appear simultaneously at the input port
labelled Lj of s, - a contradiction.

(B): ApV.,Vy) > 0. So s>si.Now ntj-l and so &T.v,,vy)>0 and hence t2 >t,. The input value
represented by source of q2 appears at the input port labelled tj of s, at time t,.(s2 -s1 )d3 . This reduces to
t2-AT(VxVY)nj which is t2-(t.t 1 ). So the input value represented by source of q, and that of q2 appear

simultaneously at the input port of sI at time ti - a contradiction.

(C): Ap(vx,vy) < 0. So s1 >s 2 . Now nj=1 and so AT(VX,vy)<O and so t 1>t.. The input value
represented by source of q, appears at the input port labelled lj of s. at time t -(s1 .s2)dt. This reduces to
tl+AT(VxvY)ntj which is tl+(t2 -t1 ). Hence the two input values appear simultaneously at the input port

of s, at time t, - a contradiction.

Case 3: n ---l. Using proofs similar to Case 2 we can show that the input values represented by
sources of q, and q,, appear simultaneously at the input port labelled /j of a processor.

We next show that if the neighborhood constants of any two labels in L, are equal then their delays
cannot be the same.

Lemma A.7: Let li and Lj be any two labels. In any correct mapping of G if ni=nj then di3d 1j.

Proof: Now li and 1j are in LI, so there exists a major path q. labelled li that is not identical to any of
the major paths labelled Lj. This implies that there exists a major path q. labelled lj and, j

1. either the computation vertices in qs and q. are the same,
2. or the computation vertices in q, are a subset of the computation vertices in qr'
3. or the computation vertices in qr are a subset of the computation vertices in qs"

Consider the first case. By Lemma A.4, qr and q. must be identical - a contradiction.

Next consider the second case. q, passes through a subset of the vertices in qr' Let vx and v be the two
vertices in q such that vx is in the subset and v is not. Then there is a major path qt labelled lj distinct
from q. that passes through vy as illutrated in Figure A.2.

(a)the vertex adjacent to a source vertex in a major path

4b-- .5*5
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By Lemma A.3, 'p(VXvY)dI=AT(v.,vY)n/i. Assume dli-dlj and hence Ap(vx,vy)dtj=AT(v.,vy)nj. By
Lemma A.6, v. and vy must be in the same major path labelled Lj - a contradiction.

We can similarly show that n ,,----n -7Ld d j for the third case also.

A.2 Connected Components

We now examine the relationship between correct mapping and connected components. In particular let
lEL1 and VEL1 . Let S be a connected component obtained by removing all the edges and source and sink

. vertices from G whose labels are in Lo-(I~h,}. In general several such components may result and S is
"one such component.

Let St1 5 ={major paths labelled Ip in S} and St.,m{major paths labelled Lv in S).

Let G~=<VP',E,0> and Gs  <VV,E > be two directed graphs and F," and F' be two one-one functions
such that

1. FO:S 1 ->VO (the major paths in SO are represented by the vertices in Vi')

2. Es"-=(<qr,q.>l qmESI,, qnESO and there exists a directed edge labelled Iv from some
computation vertex in qm to some computation vertex in q.)

3. F':S1 ->VVs (the major paths in SIO are represented by the vertices in V ')

4.E"-(<qm,q,> qmESIV, qnESi, and there exists a directed edge labelled II from some
computation vertex in qm to some computation vertex in qn)

We are now in a position to establish the first fundamental result concerning the structure imposed on S
by any correct mapping.

Lemma A.8: If there exists a syntactically correct mapping for G then S must satisfy the following
conditions.

1. GO must be acyclic, and there must be a unique directed path between any pair of vertices in

-- 2. GV must be acyclic, and there must be a unique directed path between any pair of vertices in

Proof: The proofs for (1) and (2) are similar and we thus only prove (1).

We will first show that GO is acyclic. Suppose there is a cycle in GO. Let q1, q2 ... qm be the set of

vertices in VO that form a cycle in GO as shown in Figure A.3.
." ..

, , .:
O5.

*.°4*.
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Figure A.3

This cycle implies that, between any pair v and vy of not necessarily distinct computation vertices in

there exists a path p between them through computation vertices in each of q9 , q3, ... qM and through

edges labelled Ig or It, as shown in Figure A.4 wherein the Ohorizontal edges. are labelled Iu and the
anon-horizontal edges" are labelled It.

V1 VV

qu1  - - --

Figure A.4

Let ki and k2 be the number of edges labelled Ip in p whose directions are consistent and not consistent

respectively with the direction imposed on them by the directed path passing through the same sequence
of vertices as in p. Let k'-k=h.

Similarly let k1 and Q be the number of edges labelled Iv in p whose directions are consistent and not
' consistent respectively with the direction imposed on them by the directed path passing through the same

sequence of vertices as in p. As m vertices in GO form a cycle, kl-kfm and clearly m>1. By Lemma
A.2,

and A, (vxlv )=dt h +d

Let the distance between v. and vY in the major path q, be k. Hence

&P (v2 , vy) =nt;,k

and AT (v , Vy)=d1,k

"",

fNt1
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and so

SnLkni~hnL~m . .. (a)

dI k=di] ph+d,,M .. . (b)

By Lemma A.5, nl f=nlu, = nIO==nIt,0 and hence the possible values that <n, n,> can assume are
<1,0>, <1,1>, <1,-I>, <-1,0>, <-1,1>, <-1,-1>, <0,1> and <0,-i>. We will arrive at a
contradiction for each of these values that <nl,., nh,> asuumes.

1. Consider the set of values <1,1> and <-I,-I>, that is, nt=nh,. From (a) and (b) dI=d,,

- a contradiction since by Lemma A.7, d14y
2. Consider the set of values <0,1> and <0.-I>, that is, nu=0 and nItE{1,-1). From (a)

n,"=0 - a contradiction as nav'0.
3. Consider the set of values <1,0> and <-I,0>, that is, nIOE{1,-I} and na,fO. From (a) and

(b) dl,,=O - a contradiction as dl,,>O.
4. Consider the set of values <-1,1> and <1,-I>, that is, n, IE{A,-1) and nh,E{1,-1). From (a)

and (b) d1 -=-dIV - a contradiction as dI#>0 and dtV>0.

So we have arrived at contradictions when G. has a cycle and hence GO must be acyclic.

We next show that there must be a directed path between any pair of vertices in VP'. Suppose not. Then

let q, and qt be two vertices in V" that do not have a directed path between them. Now GP is connected

and so there must be a qk in V.0 such that one of the following two cases must occur.

1. There are two vertex disjoint directed paths; one from q, to qk and the other from qt to qk"
2. There are two vertex disjoint directed paths; one from qk to q. and the other from qk to qt.

We will only consider the first case and the proof for the second c e will be similar. Let q be the

vertex adjacent to qk in the directed path from q, to qk and qn be the vertex adjacent to qk in the

directed path from qt to qk as shown in Figure A.A

-qt

Now qm, qn, qk, q, and qt are all major paths labelled u in G. Existence of a directed edge from qm to qk

in GO' in Figure A.5 implies there exists computation vertices vc in qm and v w in qk and a directed edge e,

labelled Iv from vx to v . Similarly existence of a directed edge from q. to qk in GO implies there exists
computation vertices vy in qu and vu in qk and a directed edge eb labelled tl from vy to vu as illustrated

in Figure A.6."$

U-

. . .. .. . . ... ., , .. ,,., .. ,..... .. .... , . .. . . . ... .. . . . ; . -; -. 5-*%'- -t z -S3 ;'.'.
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qM

I I I v -

L_ . ..... . ..

•b

4br- - -- -- -

V

Figure A-6

In Figure A.6 each of the shaded boxes denote a major path labelled IA. Let the distance between vw and
v in qk be h and hence in any correct mapping,

and Ar (v,, va) =d1oh

As there is a directed edge from vX to v.,

and A (Vz. v) =dl,

Also as there is a directed edge from vY to vU,

AP (VY, V ) :n V

and Ar (vY, V) =dip

From the above equations we obtain,

% &P (Tz , Iy =nigh

and A T (vz, V) =d h

Now by Lemma A.6, v and v7 must be in the same major path labelled IA. But qm and q. are distinct
- a contradiction.

% .: Lastly we must show that the directed path between any pair of vertices in GO is unique. Suppose not.

Let qm and q. be two vertices in Gs' such that there are two distinct directed paths from qm to q. Let

(qmqml,..,qmi,qs,qt..) and bqm,qmt,..,qipqs#qr,..} be the two sequence of vertices traversed by the first
and second directed paths respectively. Let qt and q. be distinct. So the two sequences differ after q We

[*. have already shown that there must be a directed path between any pair of vertices in GO. Without loss of

generality let there be a directed path from qr to q. So now there are two directed paths from q. to q.
The first directed path is a directed edge from q, to qt and the second directed path is through the

.................................................
-%-,' '.-; ' .;' ..-3, %':,,:,*- ' . ,, -,-"- '-..' - - '. ., .. ' . .. '..... . . - .- -""-:. "- .""' .": "
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sequence of vertices {qtqr .. l. "These two directed paths imply the existence of computat.on vertices
v and vy in q and q, respectively and two paths p, and p. between them as shown in Figure A."

Vu Y

qs-

-p •"€Figure A.7

*17

The first path p1 between v x and vy traverses the edge ea labelled iv. The second path p. is through
computation vertices in qrqtqj Let kj' and k be the number of edges labelled Igt in p1 whose
directions are consistent and not consistent respectively with the direction imposed on them by the
directed path from v x to v7 passing through the same sequence of vertices as in p1. Let kf' - k -h1 . For
this path from Lemma A., we obtain, '

AT(Vx'Vy)=hl dP+dVi

Let k and kf be the number of edges labelled Ip in P2 whose directions are consistent and not consistent

-4-

respectively with the direction imposed on them by the the directed path from v x to vy passing through
the same sequence of vertices as p2. Let k - k --h.,. Also let k and k be the number of edges labelled
iv in p2 whose directions are consistent and not consistent respectively with the direction imposed on them
by the directed path from v x to vy. passing through the same sequence of vertices as in p.. Letkh- kf i m. The distance from dto qt must be at least l and so m>l. For the second path p.. from
Lemma A.2 again, we obtain,

Ap(vXvY)=hznP+nm
AT(VxvY)=h hd, +d m

* and so

-~~ (hl-hfl)d,=(m-1jdl,, (d)
(c) and (d) are similar to (a) and (b) that resulted from a cycle in G Hence solution to (c) and (t

would lead to contradictions and hence the directed path between any pair of vertices in G' must be

* unique.

tWe establish the link between Mesh Graphs and S through the following lemma.
1PLemma A.iP S is a Mesh Graph if and only if the following conditions are satisfied:

y1. G is acyclie, and there must exist a unique directed path between any pair of vertices in p. .L

1 22

':,.,..'. .. ? .; ... ,'2. ... . .. . ....-* .. * .* ..... ...... ......... .... , . .,. ., . ,~ .. ,. U .. - . .. .
L emm . .
again,"we ob t ai-
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2. G' is acyclic, and there must exist a unique directed path between any pair of vertices in VI

Proof: L

(Only If): Simple.

(If Part): Let Vs be the set of computation vertices in S. Topologically sort the vertices of GO and G'.

Assign indices ranging from 0 to JV;I-1 to the topologically sorted vertices in X' s Let 1, denote the

sequence of indices ranging from 0 to JVPi-1. Similarly assign indices ranging from 0 to IV"J-1 to the

topologically sorted vertices in Vv. Let 1. denote the sequence of indices ranging from 0 to IVII-1.

We next construct a set BCI XI2 and a one-one function F:VG->B. To begin with let B=O. Let q.

and q. be any two vertices in VP and V"' respectively. Now qm and q. are major paths labelled ljs and 1v
respectively in S. Let vX be the computation vertex in qn and q.. Let a and b be the indices assigned to

qm and q. respectively by the topological sort of vertices in VO and V' respectively. Then let
* F(vx)=f<b,a> and B=BU(<b,a>}. Using conditions (1) and (2) of the lemma it can be easily shown

that F is a one-one function that transforms S into a Mesh Graph.

k 0

We are now in a position to establish our fundamental result relating S, Mesh Graphs and correct
mapping.

Theorem A.1: If there exists a syntactically correct mapping for G then S must be a Mesh Graph.

*; Proof: Straightforward from Lemma A.8 and Lemma A.9.

0

Theorem 3.1 captured the structure of the minimally labelled component SG of GEe and its proof is an
immediate consequence of Theorem A.I.

A.3 Properties of Mesh Graphs

We examine some properties of Mesh Graphs that we will be using later on. For purposes of examining
these properties alone we will assume that the connected component S is a Mesh Graph.

Let v1 and vy be any two computation vertices in S. Consider any path p between v1 and vy. Let k' and
kP, be the number of edges labelled I# in p whose directions are consistent and not consistent respectively
w1ith the direction induced on them by the directed path from vx to v y through the same sequence of

vertices as in p. Similarly let k' and k' be the number of edges labelled Iv in p whose directions are

consistent and not consistent respectively with the direction induced on them by the directed path from v.
to vy through the same sequence of vertices as p. In the following lemma we relate <xt,,x,,> and

.<yl,,y,,>, to k,' , k, k', and k'.
Lemma A.10: k' - kA y1#-x1 and k' - k -

Proof: The proof is by induction on the path length. Let n denote the path length. vx and v are

2 distinct and hence n>O.

Basis Step: n-I; so the path consists of only one edge. Hence only one of k1. k;. k-
- and k' can be 1 and the rest must be 0.

We will show for the case kV - 1. So kJ = k' - k =k 0. This implies the path is a directed
edge labelled l from vx to vy. By definition of a Mesh Graph then yl-x=l and yh,-x1,O. Similarly we
can prove the basis is true for the other three cases also.
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Induction Step: Assume the lemma is true for paths of length <n. Consider any path fron v, to v
of length n+l. If n+l=1 then lemma holds by basis. So assume n+1>l and let v. be any intermediate
vertex in this path. Let nI and n2 denote the path length from v. to vz and v. to v in this path. Clearly
n1 _<n and <n. By applying the induction hypothesis to each of these two paths it follows that the
lemma is true for paths of length<n+l.

Now consider any correct mapping of S and let vX and v y be any two computation vertices in S. We
relate the processors and the times at which they are mapped in the following lemma.

Lemma A.11: aApVVy)(yLx)n+(y,-xnu and /TVx,Vy)---Y-,)d +(yt-xt,)d

Proof: Straightforward from Lemma A.10 and Lemma A.2

0
We next establish a fundamental property of Mesh Graphs. This property relates the existence of a

*: directed path between two computation vertices in a Mesh Graph to certain relationships between their
coordinates. This is useful in the proof of Theorem 3.2 wherein we show that certain graphs in e can
never be mapped correctly.

To prove this property the following lemma is useful.

Lemma A.12: Let liE {ls,Lv) and let qm' qn and qk be three distinct major paths labelled Ii. If the
indices m,n and k of qm,qr and qk respectively are such that m<k<n, then any path between any
computation vertex in qm and any computation vertex in q. must pass through a computation vertex in

'" : qk"

- - Proof: Let li=lus and let v,vy and v. be any three computation vertices in qr,qn and qk respectively.
Indices of qm,q. and qk are m,n and k respectively and hence Fgv(v,)-=m, Fiv(vy)=n and F(vZ)=k.

Now assume that the path does not pass through any computation vertex in qk" Then the path must
" traverse an edge labelled lv between two computation vertices in major paths q. and qr that are labelled

pl such that if s and r are the indices of q. and qr respectively then s<k<r. By Lemma A.10, the number
of edges labelled 1v in any path from q, to qr is r-s. Since s<k<r and k,r and s are integers, r-s>2. But as
there is also an edge labelled lv between a computation vertex in q, and a computation vertex in q it
follows from the definition of a Mesh Graph that r-s= 1-a contradiction.

Using similar arguments we can show that the lemma is true for li=ll.

0

The following result is a straightforward consequence of the previous lemma.

Corollary A.1: Let IiE({p,lv) and ljE{lu,lv} and let hi3lj. Let qm and q. be two distinct major
paths labelled Ii. If their indices m and n differ by 1 then any path between a computation vertex in qm
and a computation vertex in q. must traverse an edge labelled lj between computation vertices in qm and
q. respectively.

Proof: Without loss of generality let m=--n+l, where m and n are the indices of qm and qn
respectively..Now pick a path from some computation vertex in qm' say vx , to some computation vertex

in q., say v such that it does not traverse an edge between any pair of computation vertices in q. .nd
qn Then there must be a computation vertex v. in this path distinct from vx and v.. Let v. be in the

O major path %. Let s be the index of q.. If s>m then the path from v to v. violates Lemma A.12 and if
s<m then the path from v. to vy violates Lemma A.12.

"!':::0

...................................... ,*...
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We are now ready to establish a fundamental property of Mesh Graphs.

Lemma A.13: Let Y. -and v Ybe any pair of computation vertices such that y1,, xr, and yh :?xL

Then there must exist a directed path from v to v.

Proof: Let y,,xg,=m and y1,,-x 1 n. The proof is an induction on n.

Basis Step: We need to consider the case when m0O and n>O and the case when m>O and n=O.

C Case 1: m=O and n>O. By the definition of a Mesh Graph, there must be a directed path from vX to

* v, in some major path labelled Iv.

C Case 2: m>O and nz=O. By the definition of a Mesh Graph again, there must be a directed path from

vto v, in some major path labelled 1,q.

*Induction Step: Assume the lemma holds for any pair of vertices v. and v Y such that Oy,-1,5
and Oy,. x,,<n. We will show that it holds for any v -and v Y such that O<-yi,,.xt,:m+1 and

* O<y1, xtv<n+1. To do this we have to consider the following three cases.

1. yx,5mland y,, -x,1,n.
2. y,,x,, m and y1 ;.x 1,,=n+1.
3. y1'-x1,=m+1 and y~x~n1

* The following geometric picture comes in useful in understanding the proof.

GK

Figur* AS8

* C

H J L
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The lines GH, IJ and KL denote major paths labelled Iv. The index of GH is xi, and the indices of IJ and
KL are m+x, s and m+l+xL respectively. The lines AB, CD and EF denote major paths labelled tu. The
index of A.B is x,,, and the indices of CD and EF are n+xtu and n+l+xl , . The induction hypothesis holds
for vX and any vy within the region enclosed by AB, CD, GH and IJ '.hich is the shaded region in the
above figure

We first proceed to establish that the lemma holds for any vy such that yl -xts=m+l and 0<yl,-x1 , n
Consider one such vertex vy as shown in Figure A.9.

G K

Vy

V q

M N

C

EF

H j L

Figure A-9

From Corollary A.1, any path from v to vy must traverse an edge labelled 1, between vertices in [J and
KL. Let v. and vw be the two vertices in IJ and KL respectively. Now vu and vw must appear in one of

* the following three regions in Figure A.9.

1. Above AB
2. Within AB and MN
3. Below MN

Figures A.10(a), A.10(b) and A.10(c) illustrate cases 1, 2 and 3 respectively.

G K G K G
V. VV,

A z 8 A- A
w V1

YVT VY

-N M N _ _ N
V. Vw 

.C -C- C - -0

E. F E- F E F
S4I0

H J L H J L H J L

Figure A.1O(a) Figure A-1O(b) Figure A.IO(C)
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Case 1: By the definition of a Mesh Graph, vz must exist in AB. Then there is 3 directed path from v
to vz and from v. to vy.

Case 2: By the inductive assumption, there is a directed path from v to vu. The edge labelled Iu is
directed from vu to vw. By the Mesh Graph definition there is a directed path from vw to v y.

Case 3: We now show that whenever v and v w occurs below MN then v2 must always exist. Suppose

not. Then by definition of Mesh Graph there cannot be any vertex on IJ above MN and on MN to the left
of IJ. Consider any path p, between v and any vertex, say vs on IJ. v must be below MN. Then by
Lemma A.12, there must exist a vertex, say Yr on MN in the path p, and vr precedes v, in p.. As v does
not exist, v must be to the right of UJ. Consider any path p2 between v and vr. By Lemma A.12 again,
there must exist a vertex, say vt on IJ in the path P2 and v, precedes v. in p,. So there exists a path

between v1 and vt and no vertex on MN in this path - a contradiction. So v must exist. Therefore by
the inductive assumption there is a directed path from v. to v2. The edge labelled 1ts is directed from v. to

Vy.

We can similarly show that the lemma holds W1 and Vv7 such that yt -x1 jm1 and yi;-x1,-=n+l and
also holds Vvx and VvY such that y1 ,-x 1,=m+l and y(,-xe--n+l.

0

We have established all the relevant results to prove Theorem 3.2.

Proof: (of Theorem 3.2)

(Only If Part): Consider a correct mapping of G. Now by Theorem 3.1, SG must be a Mesh Graph.
We construct a Main Diagonalization of SG as follows. If <ntlnl>E{<1,1>,<l,-l>,<l,O>,<O,1>)
then let w=<w1 ,w,>= <n1,,n1,> and n1j be the consistency constant of a1j. Otherwise let
w---<-n ,-n> and -nj be the consistency constant of aq.

We will prove that each of the three conditions is necessary when <nn 1u>-<,-1> as the proof for
any other value that it assumes is similar.

<n 1,,n 1 >-<1.-1> and so by the above construction of a Main Diagonalization the diagonalization

factor w=<1,-1>. Hence the complementary diagonalization factor w--<0,1>.

(1) Consider any edge labelled lj directed from vx to v Y. Now p(vxvy)=njE{1,0,O}. Also by
Lemma A.11, AP(vxvy)-(y 1 ,-xi, ) - (yj,,xo1 ,) and so Ap(vX,vy)=R&D(x,vy) and hence a~j is consistent with
respect to TD.
So consistency of aq with respect to TD ensures that adjacent vertices are mapped on neighboring
processors.

(2) Now &e(VVy)

Also AT(YxVy) "(yj,-xjP)dt1 + (ytj-x1,)d1 v
and AT(Vxvy) =dtj

As nq,di,d,, and dl, are all constants, (yu.xt,) is a constant. w,-<0,1> and so ADc(vx,vy) ,-x )
and hence bj is consistent with respect to TDC.
Consistency of b with respect to ensures that elements in a data stream travel at a constant
velocity.

(3) Let a yt-t and b-[yt,-xj,,). We have already proved that aq and bij are consistent with

respect to TD and rDe respectively and hence we easily obtain d -(mq+cq)dj,+cqdto.

From Lemma A.11. AP(vx,vY)-a-b-AD(vx,vy) and AT(vx.vY)-da+dUb.
Now we-<0,1> and so D,(V ,vy)-b. Al AD(VlVy)om JADe(V.,VY) and so clj(a-b)-mb.

It, "- - -"-' - ' " ".- ' . ,
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'Now Ap vx,Vy)dlj==a-b)dtj
-[(mtj+clj)dt,+cjdglJ(a-b)
=m tj AT(v x, vy(dl+dl,,)I-acfj+b(mlj+cJ)I
-=m tj&T(Vx,Vy )  "

and so from Lemma A.6, there must be a major path labelled lj passing through vX and v Y.

Satisfaction of this condition ensures that no two values appear simultaneously at the input port of any
processor.

(If Part): Let D={D1 , D., .., D.} be the set of main diagonals where i denotes the index of any DIED.

Construct a linear array LAr with jA--n. Now construct a mapping through the following steps.

1. Choose two-phase clocking if there exists a transitive edge labelled lj such that mtj=O or else
choose a single-phase clocking scheme.

2. Let Dq be any diagonal in D and let v. be any computation vertex in D Then, let PA(vx)=-q.

This assigns computation vertices to processors.
3. Next fix the neighborhood constant n1l and delay constant dl, for every label Ij in L,. Let

ntj--mj. Let da and db be two constants which we will be using in the construction of the

delays for the labels in L1. If the main diagonalization factor w is <1,-i> or there exists a

transitive edge labelled lj such that mjf=0 then let d,-2 else let d.=l. Let Cmin be the

minimum of all consistency constants among all the relations in SDc. If cmin>O then set db=I
else set db=l+cminida. Let dtjimtjdb+cjda.

4. Next construct the neighborhood and delay constant for the labels in L". By definition of L , ,
if there exists a label Lj in L2 then there must exist some label i in L1 such that for every

major path in Eli there is an identical major path in Eli. Hence let n1j=n 1i and dijfdii.
5. For every 1j in L3 , let the neighborhood relation imposed by label lj on processors in N be

empty and hence no processor's output port labelled Lj is connected to the input port labelled
Lj of any processor.

6. Construct the function TA which assigns computation vertices to time steps. Let vs be the
computation vertex which is in D1 ED and Dc EDc. Let TA(vs)rnt 0 . Let vx be any
computation vertex in D pED and DcqEDc. Then, let TA(vx)=t 0 +(q-1)d,+(p.1)d b.

Step 1 to step 6 described above completes the construction of a correct mapping which we establish as
follows.

We begin by showing that for any label 1j, nij and dj are constants. Consider an edge labelled Ij from v,
to vy and let vX be in Dp and Dcq and vy in Dr and Dc. respectively.

Now &D(vx,vy)= &P(v,vy)

=r-p

Next AT(vx,vy)f(s-q)d,+(r-p)db
= ADc(vx,vY)d,+AD(vX,vy)db
=mljdb+ctjda

Next we show that for any !j if nj-O, then all the vertices mapped onto the same processor belong to

the same major path labelled Lj. Suppose n-0. Then mj=O. Consider any v. and vy such that

&D(vx,vy)=O. Then Ap(vx,vy)'O and so clj&D(vx,vy)-OmljAD(vx,vy). But by condition (2) of the

Theorem there must be a major path labelled Ij passing through vX and vy. So whenever nj=0 and

PA(vx)-PA(vy), there is always a major path labelled 1j passing through v. and vy.

m ° " 
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We next show that no two values appear simultaneously at the input port of any processor. We have
shown that for any label Uj, if nj=O then vertices mapped onto the same processor all belong to the same

major path labelled Lj and hence no two values of any two distinct major paths labelled Ij appear
simultaneously at the input port labelled Lj of any processor. So we need to consider only major paths
labelled -'j whose neighborhood constant ntjE{I,-1}. Let nlj=lI and let q, and q2 be two major paths whose

input or output values appear simultaneously at the input port of some processor in the array. Clearly
the input values associated with these two paths must be fed simultaneously at the external input port
associated with label Lj and let t denote this time. Let vx and vy be the first vertices of q, and q.

respectively. The time taken by the input value of q, to reach PA(v.) is t+PA(v,)dj and the time taken

by the input value of q2 to reach PA(vy) is t+PA(vy)dlj. Without loss of generality let PA(vy)>PA(vx)

and hence,
SXT(vXVy) =A p(VVy)dj and so

. AT(Vvy)nj =Ap(v,vy)dj

Now mj-=nj and dlj==mijdb+cljd, and so

[&Dc(V.,vy)da+AD(vxlvy)dblmlj=AD(vx,vy)rmljdb+cljdj and hence &Dc(vx,vy)mj=&D(x,vy)ctj. But by
condition (2) of the Theorem, q, and q. must be the same major path labelled lj. We can arrive at a

similar contradiction when nij=-l.

Lastly we show that dIj>0 for any label lj. Consider the case when w=<l,-l>. So wc=<O,1>. By p
construction d,>0 and db>O. Now dlj=mljdb+2ctj. We will show that VLj, cli>O. Let vx and vy be

vertices such that there is an edge labelled lj from vx to vy. So A

we=<O,I> and hence ADc(VXVy)yLV-xV.

Suppose clj<0. Then yI, <xIL,. mE{I,-1,0} and hence yl,-x1,0 and so by Lemma A.13, there must be

a directed path from vy to vx causing a cycle. So Vii, clj>0. Hence db=l and d1jfm,+2c,.

If cj=O then we will show that mtj>O. Suppose mij<0. Then &D(VXVy)<0. ctj=O and hence y1t.x 1,v ..

and hence yt-x,,<0. So by Lemma A.13, there must be a directed path from vy to vx causing a cycle. So

mi >0 and hence d j>O. mjE(l,-1} and hence if clj>0 then di..1.

For the cases w=<O,l> and w=<1,0> we can show by Lemma A.13 that (a) if c/j:O then mlj>O

and (b) if m,,:50 and cmin<0 then c t 1+Icminl. For both these cases we can easily show that d >O.

A.4 Correctness of Mapping Cube Graphs

We had provided a technique for mapping Cube Graphs onto linear arrays. Herein we establish that the
mapping is syntactically correct. We begin by first showing that the mapping preserves the neighborhood
constant of the labels.

Theorem A.2: Let IELG and let n and d, be its neighborhood and delay constants respectively.

Then, if ef<v,,v > is the directed edge from v to vy and its label is I then PA(vy)=PA(vx)+n.

Proof: Let v. and vy be the vertices in diagonals D and Dq respectively and wp and wq be the
weights of D and Dq respectively. So,

"1 XtI +''2 XI2 +'d3 Xt3p

and *; yIt+'2Y12+'d3YI3 q

Let 1=11. Since e-<vx ,v y> and label of e is I1 it follows from definition of Cube Graph that

y1 =x 1 1+1, y12 =fx1 2 and y13 Xt3 . Consequently, wq-Wp,=wt1=. Now p and q are the indices of D and Dq

respectively. We next show that q-p+l. Suppose q#p+l. Let Dr be a diagonal distinct from D and D
such that wP < w r < w . Since wp, wr and wq are integers, it follows that wr-WP2_1 and Wq-wr.> and

hence w q-w P 2. But w.-w--w 1=l ..... a contradiction. So q=p+l-pwl.

: -. .- .... ... .... ..- .. : .. -. ... ... .. ..'- . .-.-.
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The mapping algorithm maps vertices in D onto processor p and those of Dq onto processor p+w1 and
hence PA(v y)=PA(vx)+w1 . Also from the mapping algorithm nq 1 wl. So the theorem holds for 1=11.
Similarly we can show that the theorem also holds when 1=12 and 1=13.

We next show that the mapping preserves the delay constant of every label 1.

Theorem A.3: Let IELG and let a, and d, be its neighborhood and delay constants respectively.
Then if e-<Vx,V y> is the directed edge from v. to vy and its label is 1 then TA(vy)-TA(v1 )+d1 .

Proof. (A) Let h(11,12). Clearly, vx Vy and e are all in the same mesh graph within the same
set in CG say CGi. So y13-xs 3 =0 and from the mapping algorithm,
TAlvy)-TA(V)=f(y1-xqt)d1t +(Y1-XI)d 2

1. Let the label of e be 11 and so y12 -x12 =0 and yil-xl--I and hence, TA(vy)-TA(vx)=dtl
2. Let the label of e be 12 and so ytl-x, 1=O and y I2 x12 =1 and hence, TA(vy)-TA(vx)=d 0

(B) Let the label of e be 13. So y1s-X1 3-1, y12-x1 O and yi-x-=O. Let vx be a vertex in a mesh
graph in CG i. Clearly, vy must be a vertex in some mesh graph in CGi~1 . From phase 3 of the mapping

algorithm it can be shown that TA(vy)-TA(v.)-d 13 .

From (A) and (B) above the theorem follows.

0

Lemma A.14- Let IELG and nE{ 1,-i). Let P1 and P2 be two distinct major paths labelled I and let
vx and vy be the first computation vertices in P1 and P2 respectively. Let PA(Vx)jst, PA(vy)=s 2,
TA(vx)ft and TA(vy)=t 2 . If the input/output values represented by source and sink vertices of P1 and
P2 appear simultaneously at the input port of a processor then (t.-t1 )n1 (s2s-s)dl.

Proof: Assume without loss of generality tha the input values represented by the source vertices of P1and P2 appear simultaneously at the input port of processor s.

"* 1. Let n1=l. The input port labelled 1 of processor 1 is the external input port through which the
input value represented by source vertices labelled I are fed in. The input value represented by
the sources of the major paths P1 and P2 pass through intermediate processors ranging from 1
to s and 1 to s. respectively. s is one such intermediate processor. Let t be the time at which
both the values appear at the input port labelled I of s. The time taken by the input value
represented by source vertex of P1 to reach the input port labelled I of s, is (s,-s)d,+t which is
TA(v,). Similarly the time taken by the input value represented by the source vertex of P2 to
reach the input port labelled I of s2 is (s,.s)d,+t which is TA(vy) and hence,

t 2 t-=(s 2 -s1 )dl and so
=,: -. ~ ~ ( 1-~) at (S2-s )d

2. Let n1=-l. The input port labelled I of processor INJ is the external input port. So the input
value represented by source vertex of P1 travels from INJ to s, passing through the
intermediate processor s and the input value represented by source vertex of P, travels from
IN to s. passing through s. Let t be the time at which both these input values reach s. Time
taken to reach s, by the input value represented by source vertex of Pt is t+(s-s1 )dj and the
time taken to reach s. by the input value represented by source vertex of P, is t+(s-s)dl and
hence,

t' 2-tI =(s2 ) d, and so

IjI.- '..-.
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From (1) and (2) the lemma follows.

0
I %e next show that the mapping ensures that no two input/output values appear simultaneously at the

input port of any processor.

Theorem A.4: Let IE{11,12,13). Let PI and P. be two distinct major paths labelled i. The mapping
ensures that the input/output value represented by the source/sink vertices of P1 and P2 never appear
simultaneously at the input port labelled I of any processor.

Proof: Let 1=11 and vX and v be the first computation vertices of P1 and P 2 respectively. From the
mapping algorithm we obtain,

PA (Y) -PA (v) :APk I nt k2n 2 +k3n1 I
TA (v Y -TA (,) =AT=l1 di, +k2 d 2 +k3 d[3

where k,=(y1 -xi1 ) and h1:_k,_<h,, k.-(y12 -.x2) and -h2 <k_<h, k3=(y 3 -xl3 ) and -h,<k3 <h3 .

Assume that the input/output value represented by the source/sink vertices of P1 and P. appear
simultaneously at the input port labelled 1i of a processor. By lemma A.14,

- ~* d1 1 P=ntAT (*)
We next show that (0) cannot be satisfied.

I. Let n 2 =- and so by the mapping algorithm, dl=1 and d12 =2. P1 and P2 are distinct major
paths labelled It and so k2 k3 34.

a. Let h1 -h2 +nI 3 _O. So d13 =h 1 +1+2n3 and (*) reduces to k3(h1+1+n 1 3 )+k2 =O. Now
h1+l+nt3>1 and so k.y&O and k3 40. Besides h2 _5ht+nt3 and -h.<k.<h, and so ()
cannot be satisfied.

b. Let h1-h0+nt 3 <O and so d 3 -h+nt3 and (*) reduces to k,(h,+l)+k ,=O. Now h,>1
and so k23'O and k.3 4O. Besides -h.<k<h2 and so (*) cannot be satisfied.

2. Let nt 2=-1 So d1I=1 and d12-i.

a. Let h2-h1+n 3 0 and so d 3 I2hb2 +l+n.13 So (*) reduces to 2k.+k 3(2h.+1)=o. As
-:h I, so 2h 2+123 and so k2.#O and k3#0. Besides -h.k 2 h2  and so
-(2h+)_2k.<2h 2 +1 and so (*) cannot be satisfied.

b. Let b2-h +n, 3 <0 and so d 3 =2h1+1-n3. So (*) reduces to 2k2+k 3(.h 1 +1-2nt3)=0.
Now l<h2<h-n[3 . So 2hl+1-2nt 3>1 and hence k2 #i0 and k3#y0. Besides -h2 <k2 <h.
and so -(2b+1-2nI3)<2k2 <2h+1-2nI3 and hence (*) cannot be satisfied.

" .A similar proof can be used to show that the theorem holds for 1=12 and 1=13.
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